Câu hỏi:
05/07/2025 18Quảng cáo
Trả lời:
Đáp án đúng là: D
Bất phương trình \(x + 2y > 0\) có hai ẩn nên không phải là bất phương trình bậc nhất một ẩn.
Bất phương trình \(\frac{1}{x} - 3 > 0\) có chứa ẩn \(x\) dưới mẫu nên không phải là bất phương trình bậc nhất một ẩn.
Bất phương trình \({x^2} + 1 > 0\) có chứa \({x^2}\) nên không phải là bất phương trình bậc nhất một ẩn.
Bất phương trình \(\frac{x}{2} + 1 > 0\) hay \(\frac{1}{2}x + 1 > 0\) là bất phương trình bậc nhất một ẩn có dạng \(ax + b > 0\) với \(a = \frac{1}{2} \ne 0\) và \(b = 1.\)
Vậy ta chọn phương án D.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
1. Đổi \(5,25\) tấn \( = 5\,\,250\,\,{\rm{kg}}\)
Gọi \(x\) (thùng) là số sữa mà xe có thể chở \(\left( {x \in \mathbb{N}*} \right)\).
Khi đó, khối lượng sữa mà xe chở là: \(10x\,\,\left( {{\rm{kg}}} \right).\)
Tổng khối lượng sữa và bác tài xế là: \(65 + 10x\,\,\left( {{\rm{kg}}} \right).\)
Do trọng tải của xe (tức là tổng khối lượng tối đa cho phép mà xe có thể chở) là \(5\,\,250\,\,{\rm{kg}}\) nên ta có
\(65 + 10x \le 5\,\,250\)
\(10x \le 5\,\,185\)
\(x \le 518,5\)
Mà \(x \in \mathbb{N}*\) nên xe tải đó có thể chở tối đa 518 thùng sữa.
2. Gọi \(x{\rm{\;(kg)}}\) là khối lượng axit \(X\) có trong dung dịch \(A\) và \(y{\rm{\;(kg)}}\) là khối lượng dung dịch chất \(A\) \(\left( {y > x > 0} \right)\).
Khi thêm \[1\] kg nước vào dung dịch \[A\] thì được dung dịch \[B\] có khối lượng là: \(y + 1{\rm{\;(kg)}}\).
Theo bài, nồng độ của dung dịch \(B\) là \[20\% \] nên ta có phương trình:
\(\frac{x}{{y + 1}} \cdot 100\% = 20\% \) hay \(5x = y + 1\) suy ra \(5x - y = 1\) (1)
Khi thêm \[1\] kg axit vào dung dịch \[B\] thì được dung dịch \[C\] có khối lượng là: \(y + 1 + 1 = y + 2{\rm{\;(kg)}}\) và khối lượng axit \(X\) có trong dung dịch lúc này là \(x + 1{\rm{\;(kg)}}\)
Theo bài, nồng độ của dung dịch \(C\) là \[33\frac{1}{3}\% \] nên ta có phương trình:
\(\frac{{x + 1}}{{y + 2}} \cdot 100\% = 33\frac{1}{3}\% \) hay \(3\left( {x + 1} \right) = y + 2\) suy ra \(3x - y = - 1\). (2)
Từ phương trình (1) và phương trình (2), ta có hệ phương trình: \(\left\{ \begin{array}{l}5x - y = 1\\3x - y = - 1\end{array} \right.\)
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(2x = 2,\) suy ra \(x = 1\) (thỏa mãn).
Thay \(x = 1\) vào phương trình \(5x = y + 1\) ta được:
\(5 \cdot 1 = y + 1\), suy ra \(y = 4\) (thỏa mãn).
Vậy nồng độ axit của dung dịch \(A\) là: \(\frac{x}{y} \cdot 100\% = \frac{1}{4} \cdot 100\% = 25\% .\)
Lời giải
Hướng dẫn giải
a) \(\frac{{2x + 1}}{{x + 1}} + \frac{2}{x} = \frac{2}{{x\left( {x + 1} \right)}}\) Điều kiện xác định \(x \ne - 1,\,\,x \ne 0\). \(\frac{{2x + 1}}{{x + 1}} + \frac{2}{x} = \frac{2}{{x\left( {x + 1} \right)}}\) \(\frac{{\left( {2x + 1} \right)x}}{{x\left( {x + 1} \right)}} + \frac{{2\left( {x + 1} \right)}}{{x\left( {x + 1} \right)}} = \frac{2}{{x\left( {x + 1} \right)}}\) \(\left( {2x + 1} \right)x + 2\left( {x + 1} \right) = 2\) \(2{x^2} + x + 2x + 2 = 2\) \(2{x^2} + 3x = 0\) \(x\left( {2x + 3} \right) = 0\) \(x = 0\) hoặc \(2x + 3 = 0\) \(x = 0\) hoặc \(x = - \frac{3}{2}\). Đối chiếu với ĐKXĐ suy ra nghiệm của phương trình đã cho là \(x = - \frac{3}{2}.\) |
b) \(\frac{{x - 1}}{2} - \frac{{7x + 3}}{{15}} \le \frac{{2x + 1}}{3} + \frac{{3 - 2x}}{5}\) \(\frac{{15\left( {x - 1} \right)}}{{30}} - \frac{{2\left( {7x + 3} \right)}}{{30}} \le \frac{{10\left( {2x + 1} \right)}}{{30}} + \frac{{6\left( {3 - 2x} \right)}}{{30}}\) \[15\left( {x - 1} \right) - 2\left( {7x + 3} \right) \le 10\left( {2x + 1} \right) + 6\left( {3 - 2x} \right)\] \[15x - 15 - 14x - 6 \le 20x + 10 + 18 - 12x\] \[x - 21 \le 8x + 28\] \[ - 7x \le 49\] \[x \ge - 7.\] Vậy nghiệm của bất phương trình đã cho là \[x \ge - 7.\] |
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.