Câu hỏi:
05/07/2025 11Cho phương trình \[\left( {x - 2} \right)\left( {3x + 5} \right) = \left( {2x - 4} \right)\left( {x + 1} \right)\]. Hỏi có bao nhiêu giá trị của \(x\) thỏa mãn phương trình đã cho?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp số: 2.
Ta có \[\left( {x - 2} \right)\left( {3x + 5} \right) = \left( {2x - 4} \right)\left( {x + 1} \right)\]
\[\left( {x - 2} \right)\left( {3x + 5} \right) - 2\left( {x - 2} \right)\left( {x + 1} \right)\]
\[\left( {x - 2} \right)\left[ {\left( {3x + 5} \right) - 2\left( {x - 2} \right)} \right]\]
\[\left( {x - 2} \right)\left( {x + 3} \right) = 0\]
\[x - 2 = 0\] hoặc \[x + 3 = 0\]
\[x = 2\] hoặc \[x = - 3\].
Do đó phương trình có hai nghiệm \[x = 2\]; \[x = - 3\] nên có 2 giá trị của \(x\) thỏa mãn phương trình đã cho.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
a) Đúng. Phương trình \[\left( * \right)\] có các hệ số là \[a = 2\,;\,\,b = - 5\,;\,\,c = 1.\]
b) Sai. Để phương trình có dạng \[ax + by = c\] là phương trình bậc nhất hai ẩn thì \(a \ne 0\) hoặc \(b \ne 0.\)
Do đó, phương trình \[\left( * \right)\] là phương trình bậc nhất hai ẩn \[x,{\rm{ }}y\] vì \(a = 2 \ne 0\); \(b = - 5 \ne 0.\)
c) Sai. Thay \[x = 0\,;{\rm{ }}y = 5\] vào phương trình \[\left( * \right)\], ta được: \[4 \cdot 0 - 7 \cdot 5 = --\,35 \ne - 1.\]
Do đó cặp số \[\left( {0\,;\,\,5} \right)\] không phải là nghiệm của phương trình \[\left( * \right)\].
d) Đúng. Ta có \[4x - 7y = - 1\] suy ra \[7y = 4x + 1\] nên \[y = \frac{4}{7}x + \frac{1}{7}\].
Do đó, biểu diễn hình học tất cả các nghiệm của phương trình \[\left( * \right)\] là đường thẳng \[y = \frac{4}{7}x + \frac{1}{7}.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.