Cho phương trình \[\left( {x - 2} \right)\left( {3x + 5} \right) = \left( {2x - 4} \right)\left( {x + 1} \right)\]. Hỏi có bao nhiêu giá trị của \(x\) thỏa mãn phương trình đã cho?
Quảng cáo
Trả lời:

Hướng dẫn giải
Đáp số: 2.
Ta có \[\left( {x - 2} \right)\left( {3x + 5} \right) = \left( {2x - 4} \right)\left( {x + 1} \right)\]
\[\left( {x - 2} \right)\left( {3x + 5} \right) - 2\left( {x - 2} \right)\left( {x + 1} \right)\]
\[\left( {x - 2} \right)\left[ {\left( {3x + 5} \right) - 2\left( {x - 2} \right)} \right]\]
\[\left( {x - 2} \right)\left( {x + 3} \right) = 0\]
\[x - 2 = 0\] hoặc \[x + 3 = 0\]
\[x = 2\] hoặc \[x = - 3\].
Do đó phương trình có hai nghiệm \[x = 2\]; \[x = - 3\] nên có 2 giá trị của \(x\) thỏa mãn phương trình đã cho.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.
\[a = 3,2.\]
B. \[a > 3,2.\]
C. \[a \le 3,2.\]
D. \[a > 3,2.\]
Lời giải
Đáp án đúng là: C
Theo đề bài, nếu xe có chiều rộng lớn hơn \[3,2\,\,{\rm{m}}\] thì không được phép lưu thông nghĩa là xe đó (không phải xe cơ giới và thô sơ) có chiều rộng nhỏ hơn hoặc bằng \[3,2\,\,{\rm{m}}\] được phép lưu thông.
Do đó, nếu một xe tải đi trên đường đó có chiều rộng \(a\,\,\left( {\rm{m}} \right)\) thì \[a \le 3,2.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.