Cho phương trình \({3^{x - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {x + 1} }}\) (1).
a) x = 1 là nghiệm của phương trình (1).
b) x = 3 không là nghiệm của phương trình (1).
c) Điều kiện của x để vế phải của (1) có nghĩa là x ≥ −1.
d) Phương trình (1) có tổng bình phương các nghiệm lớn hơn 30.
Cho phương trình \({3^{x - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {x + 1} }}\) (1).
a) x = 1 là nghiệm của phương trình (1).
b) x = 3 không là nghiệm của phương trình (1).
c) Điều kiện của x để vế phải của (1) có nghĩa là x ≥ −1.
d) Phương trình (1) có tổng bình phương các nghiệm lớn hơn 30.
Quảng cáo
Trả lời:
a) Thay x = 1 vào phương trình ta được \({3^{1 - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {1 + 1} }}\) (vô lí).
Vậy x = 1 không là nghiệm của phương trình.
b) Thay x = 3 vào phương trình ta được \({3^{3 - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {3 + 1} }}\)\( \Leftrightarrow \frac{1}{9} = \frac{1}{9}\) (luôn đúng).
Vậy x = 3 là nghiệm của phương trình.
c) Điều kiện: x + 1 ³ 0 Û x ³ −1.
d) \({3^{x - 5}} = {\left( {\frac{1}{3}} \right)^{\sqrt {x + 1} }}\)\( \Leftrightarrow {3^{x - 5}} = {3^{ - \sqrt {x + 1} }}\)\( \Leftrightarrow x - 5 = - \sqrt {x + 1} \)\( \Leftrightarrow x + 1 + \sqrt {x + 1} - 6 = 0\)
\( \Leftrightarrow \left( {\sqrt {x + 1} - 2} \right)\left( {\sqrt {x + 1} + 3} \right) = 0\)\( \Leftrightarrow \sqrt {x + 1} = 2\)\( \Leftrightarrow x = 3\) (thỏa mãn).
Tổng bình phương các nghiệm là 9.
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
B
Điều kiện \(\left\{ \begin{array}{l}x + 1 > 0\\2x - 1 > 0\end{array} \right. \Leftrightarrow x > \frac{1}{2}\).
\({\log _2}\left( {x + 1} \right) < {\log _2}\left( {2x - 1} \right)\)\( \Leftrightarrow x + 1 < 2x - 1\)\( \Leftrightarrow x > 2\).
Kết hợp điều kiện, ta có tập nghiệm của phương trình là S = (2; +∞).
Câu 2
Lời giải
A
\({2^{{x^2} + 2x}} = {8^{1 - x}}\)\( \Leftrightarrow {2^{{x^2} + 2x}} = {2^{3 - 3x}}\)\( \Leftrightarrow {x^2} + 2x = 3 - 3x\)\( \Leftrightarrow {x^2} + 5x - 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 5 + \sqrt {37} }}{2}\\x = \frac{{ - 5 - \sqrt {37} }}{2}\end{array} \right.\).
Do đó tổng bình phương các nghiệm của phương trình là
\({\left( {\frac{{ - 5 + \sqrt {37} }}{2}} \right)^2} + {\left( {\frac{{ - 5 - \sqrt {37} }}{2}} \right)^2} = 31\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.