Câu hỏi:

07/07/2025 29 Lưu

An và Bình không quen biết nhau và học ở hai nơi khác nhau. Xác suất để An và Bình đạt điểm giỏi về môn Toán trong kì thi cuối năm tương ứng là 0,92 và 0,88. Tính xác suất để cả An và Bình đều không đạt điểm giỏi.     

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

B

Ta có \(\overline A \overline B \) là biến cố: “Cả An và Bình đều không đạt điểm giỏi môn Toán”.

Vì hai biến cố \(\overline A ,\overline B \) độc lập nên \(P\left( {\overline A \overline B } \right) = P\left( {\overline A } \right).P\left( {\overline B } \right) = 0,08.0,12 = 0,0096\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

D

Xác suất để cầu thủ sút không vào cầu môn là \(\frac{2}{3}\).

Vì hai lần sút độc lập nhau nên xác suất để cầu thủ sút bóng hai lần đều không vào cầu môn là \(\frac{2}{3}.\frac{2}{3} = \frac{4}{9}\).

Lời giải

Gọi \(A\) là biến cố: "Số chấm của xúc xắc lớn nhất", \(B\) là biến cố: "Chọn được một lá bài tây". Dễ thấy \(A,B\) là hai biến cố độc lập.

a) Ta có: \(A = \{ 6\}  \Rightarrow n(A) = 1 \Rightarrow P(A) = \frac{1}{6}\).

b) Ta biết bộ bài 52 lá thì có 12 lá bài tây, nên xác suất chọn được một lá bài tây là \(P(B) = \frac{3}{{13}}\).

c) Suy ra \(P(AB) = P(A) \cdot P(B) = \frac{1}{6} \cdot \frac{3}{{13}} = \frac{1}{{26}}\).

d) Để thu được số chấm trên con xúc xắc và số của lá bài giống nhau thì ta có 6 cách để có được số chấm một con xúc xắc, ứng với mỗi cách đó thì có đúng 4 cách tìm được lá bài thoả mãn.

Việc gieo xúc xắc và rút ngẫu nhiên lá bài là độc lập.

Gọi \(X\) là biến cố cần tính xác suất, ta có: \(P(X) = \frac{6}{6} \cdot \frac{4}{{52}} = \frac{1}{{13}}\).

Đáp án: a) Đúng; b) Đúng; c) Đúng;   d) Sai.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP