Câu hỏi:

07/07/2025 35 Lưu

Một hộp đựng 20 tấm thẻ được đánh số từ 1 đến 20, hai tấm thẻ khác nhau đánh hai số khác nhau. Rút ngẫu nhiên một tấm thẻ, gọi A là biến cố “Rút được thẻ đánh số chia hết cho 2”, gọi B là biến cố “Rút được thẻ đánh số chia hết cho 3”. Khi đó

a) \(P\left( A \right) = \frac{1}{2}\).

b) \(P\left( B \right) = \frac{3}{{10}}\).

c) \(P\left( {AB} \right) = \frac{3}{{20}}\).

d) Xác suất để rút được thẻ mang số chia hết cho 2 hoặc 3 bằng \(\frac{{13}}{{18}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) A = {2; 4; 6; 8; 10; 12; 14; 16; 18; 20} \( \Rightarrow P\left( A \right) = \frac{{10}}{{20}} = \frac{1}{2}\).

b) B = {3; 6; 9; 12; 15; 18} \( \Rightarrow P\left( B \right) = \frac{6}{{20}} = \frac{3}{{10}}\).

c) AB = {6; 12; 18} \( \Rightarrow P\left( {AB} \right) = \frac{3}{{20}}\).

d) \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{2} + \frac{3}{{10}} - \frac{3}{{20}} = \frac{{13}}{{20}}\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố “Lần gieo đầu tiên xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( A \right) = P\left( {\overline A } \right) = \frac{1}{2}\).

B là biến cố “Lần gieo thứ hai xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( B \right) = P\left( {\overline B } \right) = \frac{1}{2}\).

C là biến cố “Tổng số chấm trong hai lần gieo là số chẵn”.

Suy ra \(C = AB \cup \overline A \overline B \).

Khi đó \(P\left( C \right) = P\left( {AB} \right) \cup P\left( {\overline A \overline B } \right)\)\( = P\left( A \right).P\left( B \right) + P\left( {\overline A } \right).P\left( {\overline B } \right)\)\( = \frac{1}{2}.\frac{1}{2} + \frac{1}{2}.\frac{1}{2} = \frac{1}{2} = 0,5\).

Trả lời: 0,5.

Lời giải

a) Do A, B, C độc lập nên các biến cố A, \(\overline B ,\overline C \) cũng độc lập.

b) Xét 3 trường hợp:

TH1: Người thứ nhất bắn trúng bia, người thứ hai và người thứ ba không bắn trúng bia.

TH2: Người thứ hai bắn trúng bia, người thứ nhất và người thứ ba không bắn trúng bia.

TH3: Người thứ ba bắn trúng bia, người thứ nhất và người thứ hai không bắn trúng bia.

Vì cả 3 trường hợp trên không đồng thời xảy ra nên biến cố có đúng một người bắn trúng bia là \(X = A\overline B \overline C  \cup \overline A B\overline C  \cup \overline A \overline B C\).

c) Vì các biến cố \(A,\overline B ,\overline C ,\overline A ,B,\overline C ,\overline A ,\overline B ,\overline C \) độc lập và các biến cố \(A\overline B \overline C ,\overline A B\overline C ,\overline A \overline B C\) xung khắc nên ta có: \(P\left( X \right) = P\left( {A\overline B \overline C } \right) + P\left( {\overline A B\overline C } \right) + P\left( {\overline A \overline B C} \right)\)

\( = P\left( A \right).P\left( {\overline B } \right).P\left( {\overline C } \right) + P\left( {\overline A } \right).P\left( B \right).P\left( {\overline C } \right) + P\left( {\overline A } \right)P\left( {\overline B } \right)P\left( C \right)\)

= 0,6.0,5.0,2 + 0,4.0,5.0,2 + 0,4.0,5.0,8 = 0,26.

d) Gọi T là biến cố “Có ít nhất 1 người bấn trúng bia”, suy ra \(\overline T \) là biến cố “Cả 3 người không bắn trúng bia”.

\(P\left( T \right) = 1 - P\left( {\overline T } \right) = 1 - 0,4.0,5.0,2 = 0,96\).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP