Một hộp đựng 20 tấm thẻ được đánh số từ 1 đến 20, hai tấm thẻ khác nhau đánh hai số khác nhau. Rút ngẫu nhiên một tấm thẻ, gọi A là biến cố “Rút được thẻ đánh số chia hết cho 2”, gọi B là biến cố “Rút được thẻ đánh số chia hết cho 3”. Khi đó
a) \(P\left( A \right) = \frac{1}{2}\).
b) \(P\left( B \right) = \frac{3}{{10}}\).
c) \(P\left( {AB} \right) = \frac{3}{{20}}\).
d) Xác suất để rút được thẻ mang số chia hết cho 2 hoặc 3 bằng \(\frac{{13}}{{18}}\).
Một hộp đựng 20 tấm thẻ được đánh số từ 1 đến 20, hai tấm thẻ khác nhau đánh hai số khác nhau. Rút ngẫu nhiên một tấm thẻ, gọi A là biến cố “Rút được thẻ đánh số chia hết cho 2”, gọi B là biến cố “Rút được thẻ đánh số chia hết cho 3”. Khi đó
a) \(P\left( A \right) = \frac{1}{2}\).
b) \(P\left( B \right) = \frac{3}{{10}}\).
c) \(P\left( {AB} \right) = \frac{3}{{20}}\).
d) Xác suất để rút được thẻ mang số chia hết cho 2 hoặc 3 bằng \(\frac{{13}}{{18}}\).
Quảng cáo
Trả lời:
a) A = {2; 4; 6; 8; 10; 12; 14; 16; 18; 20} \( \Rightarrow P\left( A \right) = \frac{{10}}{{20}} = \frac{1}{2}\).
b) B = {3; 6; 9; 12; 15; 18} \( \Rightarrow P\left( B \right) = \frac{6}{{20}} = \frac{3}{{10}}\).
c) AB = {6; 12; 18} \( \Rightarrow P\left( {AB} \right) = \frac{3}{{20}}\).
d) \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{2} + \frac{3}{{10}} - \frac{3}{{20}} = \frac{{13}}{{20}}\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi A là biến cố “Lần gieo đầu tiên xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( A \right) = P\left( {\overline A } \right) = \frac{1}{2}\).
B là biến cố “Lần gieo thứ hai xuất hiện mặt chấm chẵn” \( \Rightarrow P\left( B \right) = P\left( {\overline B } \right) = \frac{1}{2}\).
C là biến cố “Tổng số chấm trong hai lần gieo là số chẵn”.
Suy ra \(C = AB \cup \overline A \overline B \).
Khi đó \(P\left( C \right) = P\left( {AB} \right) \cup P\left( {\overline A \overline B } \right)\)\( = P\left( A \right).P\left( B \right) + P\left( {\overline A } \right).P\left( {\overline B } \right)\)\( = \frac{1}{2}.\frac{1}{2} + \frac{1}{2}.\frac{1}{2} = \frac{1}{2} = 0,5\).
Trả lời: 0,5.
Lời giải
a) Do A, B, C độc lập nên các biến cố A, \(\overline B ,\overline C \) cũng độc lập.
b) Xét 3 trường hợp:
TH1: Người thứ nhất bắn trúng bia, người thứ hai và người thứ ba không bắn trúng bia.
TH2: Người thứ hai bắn trúng bia, người thứ nhất và người thứ ba không bắn trúng bia.
TH3: Người thứ ba bắn trúng bia, người thứ nhất và người thứ hai không bắn trúng bia.
Vì cả 3 trường hợp trên không đồng thời xảy ra nên biến cố có đúng một người bắn trúng bia là \(X = A\overline B \overline C \cup \overline A B\overline C \cup \overline A \overline B C\).
c) Vì các biến cố \(A,\overline B ,\overline C ,\overline A ,B,\overline C ,\overline A ,\overline B ,\overline C \) độc lập và các biến cố \(A\overline B \overline C ,\overline A B\overline C ,\overline A \overline B C\) xung khắc nên ta có: \(P\left( X \right) = P\left( {A\overline B \overline C } \right) + P\left( {\overline A B\overline C } \right) + P\left( {\overline A \overline B C} \right)\)
\( = P\left( A \right).P\left( {\overline B } \right).P\left( {\overline C } \right) + P\left( {\overline A } \right).P\left( B \right).P\left( {\overline C } \right) + P\left( {\overline A } \right)P\left( {\overline B } \right)P\left( C \right)\)
= 0,6.0,5.0,2 + 0,4.0,5.0,2 + 0,4.0,5.0,8 = 0,26.
d) Gọi T là biến cố “Có ít nhất 1 người bấn trúng bia”, suy ra \(\overline T \) là biến cố “Cả 3 người không bắn trúng bia”.
\(P\left( T \right) = 1 - P\left( {\overline T } \right) = 1 - 0,4.0,5.0,2 = 0,96\).
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.