Câu hỏi:

17/07/2025 125 Lưu

Trong các số dưới đây, số nào là số vô tỉ?

A. \(0,3.\)

B. \( - 1,\left( 1 \right).\)

C. \(\sqrt 5 .\)

D. \(\sqrt 4 .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Nhận thấy:

• \(0,3\) là số hữu tỉ.

• \( - 1,\left( 1 \right)\) là số thập phân vô hạn tuần hoàn.

• \(\sqrt 5 \) là số vô tỉ.

• \(\sqrt 4 = \sqrt {{2^2}} = 2\) là số hữu tỉ.

Do đó, chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Học sinh vẽ lại hình theo đúng số đo các góc.

GT

\(\widehat {xAB} = 30^\circ ,\widehat {HBz} = 150^\circ ,AH \bot mn;\)

tia phân giác \(Av\) của \(\widehat {HAt}\)

KL

b) \(xy\parallel mn.\)

c) \(AH\) là tia phân giác của \(\widehat {BAv}.\)

(1,5 điểm) Cho hình vẽ bên, biết   ˆ x A B = 30 ∘ , ˆ H B z = 150 ∘ , A H ⊥ m n .      a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận cho bài toán.  b) Chứng minh   x y ∥ m n .    c) Kẻ tia phân giác   A v   của   ˆ H A t  . Chứng minh rằng   A H   là tia phân giác của   ˆ B A v . (ảnh 2)

b) Nhận thấy \(\widehat {zBH}\) và \(\widehat {ABH}\) là hai góc kề bù nên ta có: \(\widehat {zBH} + \widehat {ABH} = 180^\circ \) hay \(150^\circ + \widehat {ABH} = 180^\circ .\)

Suy ra \(\widehat {ABH} = 180^\circ - 150^\circ = 30^\circ \).

Do đó, \(\widehat {ABH} = \widehat {BAx} = 30^\circ \).

Mà hai góc ở vị trí so le trong nên \(xy\parallel mn.\)

c)

(1,5 điểm) Cho hình vẽ bên, biết   ˆ x A B = 30 ∘ , ˆ H B z = 150 ∘ , A H ⊥ m n .      a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận cho bài toán.  b) Chứng minh   x y ∥ m n .    c) Kẻ tia phân giác   A v   của   ˆ H A t  . Chứng minh rằng   A H   là tia phân giác của   ˆ B A v . (ảnh 3)

Ta có \(xy\parallel mn\) và \(AH \bot mn\) nên \(AH \bot xy\).

Do đó, \(\widehat {xAH} = 90^\circ \).

Ta có \(\widehat {xAB}\) và \(\widehat {BAH}\) là hai góc kề nhau nên \(\widehat {xAB} + \widehat {BAH} = \widehat {xAH}\),

Do đó \(\widehat {BAH} = \widehat {xAH} - \widehat {xAB} = 90^\circ - 30^\circ = 60^\circ \).

Lại có \(\widehat {BAH}\) và \(\widehat {HAt}\) là hai góc kề bù nên \(\widehat {BAH} + \widehat {HAt} = 180^\circ \)

hay \(\widehat {HAt} = 180^\circ - \widehat {BAH} = 180^\circ - 60^\circ = 120^\circ .\)

Mà \(Av\) là tia phân giác của \(\widehat {HAt}\) nên \(\widehat {HAv} = \widehat {vAt} = \widehat {\frac{{HAt}}{2}} = \frac{{120^\circ }}{2} = 60^\circ \).

Nhận thấy \(\widehat {HAv} = \widehat {HAB} = 60^\circ \), đồng thời tia \(AH\) nằm giữa hai tia \(AB,Av\).

Do đó, \(AH\) là tia phân giác của \(\widehat {BAv}.\)

Lời giải

Hướng dẫn giải

Đáp án: \(1,5\)

Diện tích đáy của lều là: \(2,16:2,4 = 0,9{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Chiều cao \(AH\) của lều là: \(2.0,9:1,2 = 1,5{\rm{ }}\left( {\rm{m}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(8.\)

B. \(0.\)

C. \( - 8.\)

D. \(4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP