Câu hỏi:

17/07/2025 19 Lưu

Phần 3. (2,0 điểm) Câu hỏi trắc nghiệm trả lời ngắn

Trong các câu từ 15 đến 18, hãy viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Làm tròn số \(4,558\) đến hàng phần mười ta được số mới là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án: \(4,6\)

Vì hàng phần trăm của \(4,558\) là \(5.\)

Do đó, làm tròn số \(4,558\) đến hàng phần mười ta được số mới là \(4,6.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án: \(1,5\)

Diện tích đáy của lều là: \(2,16:2,4 = 0,9{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).

Chiều cao \(AH\) của lều là: \(2.0,9:1,2 = 1,5{\rm{ }}\left( {\rm{m}} \right)\).

Lời giải

Hướng dẫn giải

a) Học sinh vẽ lại hình theo đúng số đo các góc.

GT

\(\widehat {xAB} = 30^\circ ,\widehat {HBz} = 150^\circ ,AH \bot mn;\)

tia phân giác \(Av\) của \(\widehat {HAt}\)

KL

b) \(xy\parallel mn.\)

c) \(AH\) là tia phân giác của \(\widehat {BAv}.\)

(1,5 điểm) Cho hình vẽ bên, biết   ˆ x A B = 30 ∘ , ˆ H B z = 150 ∘ , A H ⊥ m n .      a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận cho bài toán.  b) Chứng minh   x y ∥ m n .    c) Kẻ tia phân giác   A v   của   ˆ H A t  . Chứng minh rằng   A H   là tia phân giác của   ˆ B A v . (ảnh 2)

b) Nhận thấy \(\widehat {zBH}\) và \(\widehat {ABH}\) là hai góc kề bù nên ta có: \(\widehat {zBH} + \widehat {ABH} = 180^\circ \) hay \(150^\circ + \widehat {ABH} = 180^\circ .\)

Suy ra \(\widehat {ABH} = 180^\circ - 150^\circ = 30^\circ \).

Do đó, \(\widehat {ABH} = \widehat {BAx} = 30^\circ \).

Mà hai góc ở vị trí so le trong nên \(xy\parallel mn.\)

c)

(1,5 điểm) Cho hình vẽ bên, biết   ˆ x A B = 30 ∘ , ˆ H B z = 150 ∘ , A H ⊥ m n .      a) Vẽ lại hình (đúng số đo các góc) và viết giả thiết, kết luận cho bài toán.  b) Chứng minh   x y ∥ m n .    c) Kẻ tia phân giác   A v   của   ˆ H A t  . Chứng minh rằng   A H   là tia phân giác của   ˆ B A v . (ảnh 3)

Ta có \(xy\parallel mn\) và \(AH \bot mn\) nên \(AH \bot xy\).

Do đó, \(\widehat {xAH} = 90^\circ \).

Ta có \(\widehat {xAB}\) và \(\widehat {BAH}\) là hai góc kề nhau nên \(\widehat {xAB} + \widehat {BAH} = \widehat {xAH}\),

Do đó \(\widehat {BAH} = \widehat {xAH} - \widehat {xAB} = 90^\circ - 30^\circ = 60^\circ \).

Lại có \(\widehat {BAH}\) và \(\widehat {HAt}\) là hai góc kề bù nên \(\widehat {BAH} + \widehat {HAt} = 180^\circ \)

hay \(\widehat {HAt} = 180^\circ - \widehat {BAH} = 180^\circ - 60^\circ = 120^\circ .\)

Mà \(Av\) là tia phân giác của \(\widehat {HAt}\) nên \(\widehat {HAv} = \widehat {vAt} = \widehat {\frac{{HAt}}{2}} = \frac{{120^\circ }}{2} = 60^\circ \).

Nhận thấy \(\widehat {HAv} = \widehat {HAB} = 60^\circ \), đồng thời tia \(AH\) nằm giữa hai tia \(AB,Av\).

Do đó, \(AH\) là tia phân giác của \(\widehat {BAv}.\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP