Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án: \(45\)
Xét \(\Delta ABC\), có \(\widehat A + \widehat B + \widehat C = 180^\circ \) hay \(90^\circ + x + x = 180^\circ \).
Suy ra \(90^\circ + 2x = 180^\circ \) nên \(2x = 180^\circ - 90^\circ = 90^\circ \).
Do đó, \(x = 90^\circ :2 = 45^\circ .\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Nhận thấy \(\left| {x + \frac{1}{{101}}} \right| \ge 0;\) \(\left| {x + \frac{2}{{101}}} \right| \ge 0;\) \(\left| {x + \frac{3}{{101}}} \right| \ge 0\)…..;\(\left| {x + \frac{{100}}{{101}}} \right| \ge 0\)
Do đó, \(\left| {x + \frac{1}{{101}}} \right| + \left| {x + \frac{2}{{101}}} \right| + \left| {x + \frac{3}{{101}}} \right| + ... + \left| {x + \frac{{100}}{{101}}} \right| \ge 0\).
Mà \(\left| {x + \frac{1}{{101}}} \right| + \left| {x + \frac{2}{{101}}} \right| + \left| {x + \frac{3}{{101}}} \right| + ... + \left| {x + \frac{{100}}{{101}}} \right| = 101x\) nên \(101x \ge 0\) hay \(x \ge 0\).
Với \(x \ge 0\), suy ra \(x + \frac{1}{{101}} + x + \frac{2}{{101}} + x + \frac{3}{{101}} + ... + x + \frac{{100}}{{101}} = 101x\)
\(100x + \left( {\frac{1}{{101}} + \frac{2}{{101}} + \frac{3}{{101}} + ... + \frac{{100}}{{101}}} \right) = 101x\)
\(101x - 100x = \frac{{1 + 2 + 3 + ... + 100}}{{101}}\)
\(x = \frac{{100.101}}{{2.101}}\)
\(x = 50\) (thỏa mãn)
Vậy \(x = 50\).
Lời giải
Hướng dẫn giải
a) Xét \(\Delta ABD\) và \(\Delta EBD\), có:
\(AB = EB\) (gt)
\(\widehat {ABD} = \widehat {DBE}\) (\(BD\) là phân giác của \(\widehat {ABC}\))
\(BD\) chung
Do đó, \(\Delta ABD = \Delta EBD\) (c.g.c)
b) Xét \(\Delta ABI\) và \(\Delta EBI,\) có:
\(AB = BE\) (gt)
\(\widehat {ABI} = \widehat {IBE}\) (\(BD\) là phân giác của \(\widehat {ABC}\))
\(BI\) chung
Do đó, \(\Delta ABI = \Delta EBI\) (c.g.c)
Suy ra \(AI = IE\) (hai cạnh tương ứng)
Mà \(I\) là giao điểm của \(BD\) và \(AE.\)
Do đó, \(I\) là trung điểm của \(AE.\)
c) Vì \(\Delta ABD = \Delta EBD\) (cmt) suy ra \(AD = DE\) (hai cạnh tương ứng)
và \(\widehat {DAB} = \widehat {DEB} = 90^\circ \) (hai góc tương ứng).
Nhận thấy, \(\Delta ADK\) vuông tại \(A\) và \(\Delta EDC\) vuông tại \(E\) có:
\(AD = DE\) (cmt)
\(\widehat {ADK} = \widehat {EDC}\) (đối đỉnh)
Suy ra \(\Delta ADK = \Delta EDC\) (cgv – gn)
Do đó, \(CE = AK\) (hai cạnh tương ứng)
Ta có: \(KB = KA + AB\); \(CB = CE + EB\)
Mà \(AB = BE\) (gt); \(AK = CE\) (cmt)
Do đó, \(KB = CB\).
Xét \(\Delta KMB\) và \(\Delta CMB\) có:
\(KB = CB\) (cmt)
\(KM = CM\) (gt)
\(MB\) chung
Do đó, \(\Delta KMB = \Delta CMB\) (c.c.c)
Suy ra \(\widehat {CBM} = \widehat {KBM}\) (hai góc tương ứng)
Mà tia \(BM\) nằm giữa hai tia \(BK,BC\) nên \(BM\) là tia phân giác của \(\widehat {KBC}\).
Mặt khác, \(BD\) cũng là tia phân giác của \(\widehat {ABC}\).
Do đó, ba điểm \(B,D,M\) thẳng hàng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.