Cho \(\Delta ABC\) vuông tại \(A\) có \(AB < AC\,,\) đường cao \(AH\,.\) Từ \(H\) kẻ \(HM \bot AB\,\,\left( {M \in AB} \right)\,.\) Kẻ \(HN \bot AC\,\,\left( {N \in AC} \right)\,.\) Trên tia đối của tia \[MH\] lấy điểm \[P\] sao cho \[M\] là trung điểm của \[PH.\] Gọi \(I\) là trung điểm của \(HC\,,\) lấy \(K\) trên tia \(AI\) sao cho \(I\) là trung điểm của \(AK;\,\,MN\) cắt \(AH\) tại \(O,\) \(CO\) cắt \(AK\) tại \(D.\)
a) \(\widehat {HKC} = \frac{1}{2}\widehat {HAC}\).
b) Tứ giác \[AMHN\] là hình chữ nhật.
c) Tứ giác \(MNCK\) là hình thang vuông.
d) \(AK = 2AD\).
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án:
a) Sai.
b) Đúng.
c) Sai.
d) Sai.

⦁ Tứ giác \(AHKC\) có hai đường chéo cắt nhau tại trung điểm \(I\) của mỗi đường nên là hình bình hành nên \(\widehat {HKC} = \widehat {HAC}\). Do đó ý a) sai.
⦁ Xét tứ giác \(AMHN\) có \(\widehat {AMH} = \widehat {MAN} = \widehat {ANH} = {\rm{90^\circ }}\)
Do đó tứ giác \[AMHN\] là hình chữ nhật. Do đó ý b) đúng.
⦁ Khi đó \(OA = ON = OM = OH\) nên \(\Delta OMH\) cân tại \(O\,.\)
Suy ra \(\widehat {OMH} = \widehat {OHM}\) mà \(\widehat {HKC} = \widehat {OHM}\) (so le trong) nên \(\widehat {HKC} = \widehat {OMH}\).
Mặt khác \(\widehat {HKC} = \widehat {HAC}\) (chứng minh ý a) nên \(\widehat {OMH} = \widehat {HKC}\).
Hình thang \(MNCK\) có hai góc kề một đáy bằng nhau nên là hình thang cân. Do đó ý c) sai.
⦁ Vì \(\Delta AHC\) có hai đường trung tuyến \(AI,\,\,CO\) cắt nhau tại \(D\) nên \(D\) là trọng tâm nên
\(AD = \frac{2}{3}AI\) mà \(AI = \frac{1}{2}AK\).
Thay vào ta được \(AD = \frac{2}{3} \cdot \frac{1}{2}AK = \frac{1}{3}AK\) nên \(AK = 3AD\). Do đó ý d) sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: 325.
Ta có \[\widehat A + \widehat B = 360^\circ - 80^\circ - 60^\circ = 220^\circ \].
Mà \(\widehat A - \widehat B = 10^\circ \) nên \[\widehat A = \frac{{220^\circ + 10^\circ }}{2} = 115^\circ \,;\,\,\widehat B = 220^\circ - 115^\circ = 105^\circ .\]
Do đó \(\widehat A + 2\widehat B = 115^\circ + 2 \cdot 105^\circ = 325^\circ .\)
Vậy \(\widehat A + 2\widehat B = 325^\circ .\)
Lời giải
Hướng dẫn giải
|
a) Vì \(ABCD\) là hình vuông nên \[\widehat {DAC} = \widehat {BAD} = \widehat {ABC} = \widehat {ABF} = 90^\circ \,;\,\,AD = AB.\] Xét \(\Delta ADE\) và \(\Delta ABF\) có \[\widehat {DAC} = \widehat {ABF} = 90^\circ \] (cmt); \(BF = DE\) (gt); \[AD = AB\] (cmt) Do đó \(\Delta ADE = \Delta ABF\) (hai cạnh góc vuông). Suy ra \(AE = AF\,;\,\,\widehat {DAE} = \widehat {BAF}\). |
|
Ta có \[\widehat {DAE} + \widehat {EAB} = \widehat {BAD} = 90^\circ \] nên \[\widehat {FAB} + \widehat {EAB} = 90^\circ \] hay \[\widehat {EAF} = 90^\circ .\]
Xét tam giác \(AEF\) có \[\widehat {EAF} = 90^\circ \] và \(\widehat {DAE} = \widehat {BAF}\) nên tam giác \(AEF\)vuông cân.
b) Vì tam giác \(AEF\)vuông cân có \(AI\) là đường trung tuyến (vì \(I\) là trung điểm của \(EF\,)\) nên \(AI\) cũng là đường cao hay \(AI \bot EF.\)
Tam giác \(AEF\) vuông cân có \(AI\) là đường cao ứng với cạnh huyền \(EF\) nên \(AI = IE = IF = \frac{1}{2}EF.\)
Mặt khác, điểm \(K\) đối xứng với \(A\) qua \(I\) nên \(AI = IK.\)
Tứ giác \(AEKF\) có \(AI = IK = IE = IF\) nên \(AEKF\) là hình thoi.
Hình thoi \(AEKF\) có \[\widehat {EAF} = 90^\circ \] nên \(AEKF\) là hình vuông.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[6{x^4}{y^3}z\].
B. \[4{x^5}y\].
C. \[2{x^3}\].
D. \[3{x^4}{y^4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
