Câu hỏi:

18/07/2025 7 Lưu

Cho hình vẽ bên, biết \[MN\,{\rm{//}}\,BC,\] \[NP\,{\rm{//}}\,AB\,.\]

Cho hình vẽ bên, biết \[MN\,{\rm{//}}\,BC,\] \[NP\,{\rm{//}}\,AB\,.\] Khẳng định nào sau đây là sai? (ảnh 1)

Khẳng định nào sau đây là sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Xét \(\Delta ABC\) với \[MN\,{\rm{//}}\,BC,\] ta có:

⦁ \(\frac{{AM}}{{AB}} = \frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) (hệ quả của định lí Thalès). Suy ra \(\frac{{AM}}{{MN}} = \frac{{AB}}{{BC}}.\) Do đó A là khẳng định đúng.

Xét \(\Delta ABC\) với \[NP\,{\rm{//}}\,AB\,,\] ta có:

⦁ \(\frac{{AN}}{{AC}} = \frac{{BP}}{{BC}}\) (hệ quả của định lí Thalès). Do đó B là khẳng định đúng.

⦁ \(\frac{{CP}}{{BP}} = \frac{{CN}}{{AN}}\) (định lí Thalès). Do đó C là khẳng định đúng.

⦁ \(\frac{{CN}}{{AC}} = \frac{{NP}}{{AB}}\) (hệ quả của định lí Thalès).

Ta có \(AN \ne CN\) nên \(\frac{{AN}}{{AC}} \ne \frac{{CN}}{{AC}}\).

Mà \(\frac{{MN}}{{BC}} = \frac{{AN}}{{AC}}\) và \(\frac{{CN}}{{AC}} = \frac{{NP}}{{AB}}\) nên \(\frac{{MN}}{{BC}} \ne \frac{{NP}}{{AB}}.\) Do đó D là khẳng định sai.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Hướng dẫn giải

Đáp án đúng là: C

Trường hợp tìm hiểu trên mạng Internet về số ca mắc bệnh COVID-19 ở Việt Nam là phương pháp thu thập gián tiếp.

Lời giải

Hướng dẫn giải

Đáp án:

a) Đúng.

b) Sai.

c) Sai.

d) Đúng.

⦁ Ta có \(A = 2xy\left( {x{y^2} - 3{x^2}y + 1} \right)\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy\).

Đa thức \[A\] có bậc là 8. Do đó ý a) đúng.

⦁ Ta có \[B = \left( {12{x^4}{y^5} - 36{x^5}{y^4} + 6{x^3}{y^3}} \right):6{x^2}{y^2}\]

\[ = 12{x^4}{y^5}:\left( {6{x^2}{y^2}} \right) - 36{x^5}{y^4}:\left( {6{x^2}{y^2}} \right) + 6{x^3}{y^3}:\left( {6{x^2}{y^2}} \right)\]

\[ = 2{x^2}{y^3} - 6{x^3}{y^2} + xy\].

Khi đó, hệ số tự do của đa thức \(B\) là 0. Do đó ý b) sai.

⦁ Thay \[x = - 1\,;\,\,y = 1\] vào biểu thức \(B\), ta có:

\[B = 2 \cdot {\left( { - 1} \right)^2} \cdot {1^3} - 6 \cdot {\left( { - 1} \right)^3} \cdot {1^2} + \left( { - 1} \right) \cdot 1 = 2 + 6 - 1 = 7\].

Vậy với \[x = - 1\,;\,\,y = 1\] thì \(B = 7\). Do đó ý c) sai.

⦁ Ta có \(A = M + B\)

Suy ra \(M = A - B\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - \left( {2{x^2}{y^3} - 6{x^3}{y^2} + xy} \right)\)

\( = 2{x^2}{y^3} - 6{x^3}{y^2} + 2xy - 2{x^2}{y^3} + 6{x^3}{y^2} - xy\)

\( = \left( {2{x^2}{y^3} - 2{x^2}{y^3}} \right) + \left( { - 6{x^3}{y^2} + 6{x^3}{y^2}} \right) + \left( {2xy - xy} \right)\)\( = xy.\)

Như vậy, \(M\) là một đơn thức. Do đó ý d) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP