Câu hỏi:

18/07/2025 14 Lưu

Cho biểu thức \(M = {\left( {x + 3} \right)^3} - \left( {x + 9} \right)\left( {{x^2} + 27} \right)\). Giá trị của biểu thức \(M\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp số: \[ - {\bf{216}}\].

Ta có \(M = {\left( {x + 3} \right)^3} - \left( {x + 9} \right)\left( {{x^2} + 27} \right)\)

\[ = {x^3} + 9{x^2} + 27x - 27 - \left( {{x^3} + 27x + 9{x^2} + 243} \right)\]

\( = {x^3} + 9{x^2} + 27x + 27 - {x^3} - 27x - 9{x^2} - 243\)

\( = \left( {{x^3} - {x^3}} \right) + \left( {9{x^2} - 9{x^2}} \right) + \left( {27x - 27x} \right) - \left( {243 - 27} \right)\)\( = - 216\).

Vậy \(M = - 216.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án:

a) Sai.

b) Sai.

c) Đúng.

d) Đúng.

Cho hình bình hành   A B C D   có   B C = 2 A B  ,   ˆ A = 60 ∘  . Gọi   E  ,   F   theo thứ tự là trung điểm của   B C  ,   A D  . Trên tia   A B   lấy điểm   I   sao cho   B   là trung điểm của   A I .    a)   A B = 2 3 B E  .  b) Tứ giác   A B E F   là hình chữ nhật.  c) Tam giác   A D I   cân tại   D  .  d)   ˆ A E D = 90 ∘  . (ảnh 1)

⦁ Do \(E\) là trung điểm của \(BC\) nên \(BE = \frac{1}{2}BC\) hay \(BC = 2BE.\)

Vì \(BC = 2AB\) và \(BC = 2BE\) nên \(AB = BE\). Do đó ý a) là sai.

⦁ Theo đề bài, tứ giác \(ABCD\) là hình bình hành nên \(AD = BC,\,\,AD\,{\rm{//}}\,BC\).

Vì \(AD = BC\); \(BE = \frac{1}{2}BC;\,AF = \frac{1}{2}AD\) (do \(F\) là trung điểm của \(AD)\) nên \(BE = AF\).

Tứ giác \(ABEF\) có \(BE = AF\) (cmt) và \(BE\,{\rm{//}}\,AF\) (vì \(AD\,{\rm{//}}\,BC\,).\)

Suy ra, tứ giác \(ABEF\) là hình bình hành.

Hình bình hành \(ABEF\) có \(AB = BE\) nên \(ABEF\) là hình thoi. Do đó ý b) sai.

⦁ Ta thấy \(BD\) vừa là đường trung tuyến vừa là đường phân giác của tam giác \(ADI\) nên tam giác \(ADI\) cân tại \(D\).

Tam giác \(ADI\) cân tại \(D\) có \(\widehat {DAI} = 60^\circ \) nên tam giác \(ADI\) là tam giác đều.

Suy ra \(BD\) cũng là đường cao của tam giác \(ADI\) nên \(BD \bot BI\) hay \(\widehat {DBI} = 90^\circ .\)

Do đó ý c) đúng.

⦁ Vì tứ giác \(ABCD\) là hình bình hành nên \(AB = CD,\,\,AB\,{\rm{//}}\,CD\).

Vì \(AB = CD\); \(AB = BI\) (do \(B\) là trung điểm của \(AI)\) nên \(BI = CD\).

Tứ giác \(BICD\) có \(BI\,{\rm{//}}\,CD\) (vì \(AB\,{\rm{//}}\,CD\)) và \(BI = CD\) nên tứ giác \(BICD\) là hình bình hành.

Hình bình hành \(BICD\) có \(\widehat {DBI} = 90^\circ \) nên tứ giác \(BICD\) là hình chữ nhật.

Khi đó, \(E\) là trung điểm của \(DI\).

Ta có tam giác \(ADI\) là tam giác đều có \(AE\) là đường trung tuyến nên đồng thời là đường cao.

Do đó, \(AE \bot DI\) hay \(\widehat {AED} = 90^\circ \). Do đó ý d) đúng.

Lời giải

Hướng dẫn giải

(1,0 điểm) Cho hình vuông   A B C D .   Lấy điểm   M   thuộc đường chéo   B D .   Kẻ   M E   vuông góc với   A B   tại   E , M F   vuông góc với   A D   tại   F .    a) Tứ giác   A E M F   là hình gì? Vì sao?  b) Xác định vị trí của điểm   M   trên đường chéo   B D   để diện tích của tứ giác   A E M F   lớn nhất. (ảnh 1)

a) Do \[ME \bot AB\] tại \(E\) nên \(\widehat {MEA} = 90^\circ .\)

Do \[MF \bot AD\] tại \(F\) nên \(\widehat {MFA} = 90^\circ .\)

Do \(ABCD\) là hình vuông nên \(\widehat {EAF} = 90^\circ .\)

Tứ giác \[AEMF\] có \(\widehat {MFA} = \widehat {EAF} = \widehat {AEM} = 90^\circ \) nên \[AEMF\] là hình chữ nhật.

b) Do \(ABCD\) là hình vuông nên \(BD\) là đường phân giác của \(\widehat {ABC}.\)

Do đó \(\widehat {ABD} = 45^\circ \) suy ra \(\Delta BEM\) vuông cân tại \(E\) nên \(BE = ME.\)

Do \[AEMF\] là hình chữ nhật nên \(ME = AF\) nên \(BE = AF.\)

Chu vi của hình chữ nhật \[AEMF\] là:

\[2\left( {AE + AF} \right) = 2\left( {AE + BE} \right) = 2AB.\]

Mà \(AB\) không đổi nên chu vi của hình chữ nhật \[AEMF\] không đổi.

Do đó, diện tích của tứ giác \[AEMF\] lớn nhất khi \[AEMF\] là hình vuông.

Suy ra \[ME = MF.\]

Khi đó \[\Delta BEM = \Delta DFM\] (cạnh góc vuông – góc nhọn kề).

Suy ra \[BM = DM\] hay \[M\] là trung điểm của \[BC.\,\]

Vậy với \[M\] là trung điểm của \[BC\] thì diện tích của tứ giác \[AEMF\] lớn nhất.