Câu hỏi:

18/07/2025 164 Lưu

Hình ảnh bên là ảnh của một lọ nước hoa hình kim tự tháp. Khi đậy nắp, lọ có dạng hình chóp tứ giác đều (tính cả thân lọ và nắp lọ) trong đó nắp lọ cũng là hình chóp tứ giác đều có chiều cao \[5{\rm{ cm}},\] cạnh đáy \[2,5{\rm{ cm}}.\] Chiều cao thân lọ và cạnh đáy lọ đều bằng chiều cao của nắp lọ. Bỏ qua độ dày của vỏ. Tính dung tích của lọ nước hoa đó ra đơn vị mi – li – lít (làm tròn kết quả đến hàng đơn vị).

Hình ảnh bên là ảnh của một lọ nước hoa hình kim tự tháp. Khi đậy nắp, lọ có dạng hình chóp tứ giác đều (tính cả thân lọ và nắp lọ) trong đó nắp lọ cũng là hình chóp tứ giác đều có chiều cao   5 c m ,   cạnh đáy   2 , 5 c m .   Chiều cao thân lọ và cạnh đáy lọ đều bằng chiều cao của nắp lọ. Bỏ qua độ dày của vỏ. Tính dung tích của lọ nước hoa đó ra đơn vị mi – li – lít (làm tròn kết quả đến hàng đơn vị). (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp số: 73.

Thể tích của lọ nước hoa hình kim tự tháp là: \[{V_1} = \frac{1}{3} \cdot {5^2} \cdot 10 = \frac{{250}}{3}\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right).\]

Thể tích của nắp lọ nước hoa là: \[{V_2} = \frac{1}{3} \cdot 2,{5^2} \cdot 5 = \frac{{125}}{{12}}\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right).\]

Dung tích của lọ nước hoa đó là: \(\frac{{250}}{3} - \frac{{125}}{{12}} \approx 73\;\;\left( {{\rm{c}}{{\rm{m}}^3}} \right) = 73\,\,\left( {{\rm{ml}}} \right)\).

Vậy dung tích của lọ nước hoa đó là \(73\,\,{\rm{ml}}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp số: \[ - {\bf{216}}\].

Ta có \(M = {\left( {x + 3} \right)^3} - \left( {x + 9} \right)\left( {{x^2} + 27} \right)\)

\[ = {x^3} + 9{x^2} + 27x - 27 - \left( {{x^3} + 27x + 9{x^2} + 243} \right)\]

\( = {x^3} + 9{x^2} + 27x + 27 - {x^3} - 27x - 9{x^2} - 243\)

\( = \left( {{x^3} - {x^3}} \right) + \left( {9{x^2} - 9{x^2}} \right) + \left( {27x - 27x} \right) - \left( {243 - 27} \right)\)\( = - 216\).

Vậy \(M = - 216.\)

Lời giải

Hướng dẫn giải

Đáp án:

a) Đúng.

b) Sai.

c) Sai.

d) Đúng.

⦁ Ta có \[G = \left( {7{x^5}{y^4}{z^3} - 3{x^4}y{z^2} + 2{x^2}{y^2}z} \right):{x^2}yz\]

\[ = 7{x^5}{y^4}{z^3}:{x^2}yz - 3{x^4}y{z^2}:{x^2}yz + 2{x^2}{y^2}z:{x^2}yz\]

\[ = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\].

Đa thức \(G\) có bậc là 8. Do đó ý a) đúng.

⦁ Thay \(x = 1\,;\,\,y = - 1\,;\,\,z = 1\) vào biểu thức \(G\), ta có:

\(G = 7 \cdot {1^3} \cdot {\left( { - 1} \right)^3} \cdot {1^2} - 3 \cdot {1^2} \cdot 1 + 2 \cdot \left( { - 1} \right) = - 7 - 3 - 2 = - 12.\)

Vậy với \(x = 1\,;\,\,y = - 1\,;\,\,z = 1\) thì \(G = - 12\). Do đó ý b) sai.

⦁ Ta có \(A + 14{x^3}{y^3}{z^2} - 6{x^2}z + 2y = G\) hay \(A + 14{x^3}{y^3}{z^2} - 6{x^2}z + 2y = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\)

Suy ra \(A = \left( {7{x^3}{y^3}{z^2} - 3{x^2}z + 2y} \right) - \left( {14{x^3}{y^3}{z^2} - 6{x^2}z + 2y} \right)\)

            \( = 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y - 14{x^3}{y^3}{z^2} + 6{x^2}z - 2y\)

\( =  - 7{x^3}{y^3}{z^2} + 3{x^2}z\).

Khi đó, đa thức \[A\] hạng tử tự do là 0. Do đó ý c) sai.

⦁ Ta có \[A + G = \left( { - 7{x^3}{y^3}{z^2} + 3{x^2}z} \right) + \left( {7{x^3}{y^3}{z^2} - 3{x^2}z + 2y} \right)\]

\[ = - 7{x^3}{y^3}{z^2} + 3{x^2}z + 7{x^3}{y^3}{z^2} - 3{x^2}z + 2y\]

\[ = \left( { - 7{x^3}{y^3}{z^2} + 7{x^3}{y^3}{z^2}} \right) + \left( {3{x^2}z - 3{x^2}z} \right) + 2y\]\( = 2y\).

Như vậy, tổng của hai đa thức \[A\] và \(G\) là một đơn thức. Do đó ý d) đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Dữ liệu số rời rạc.

B. Dữ liệu không là số có thể sắp thứ tự.

C. Dữ liệu số liên tục.

D. Dữ liệu không là số không thể sắp thứ tự.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP