Kết quả của phép cộng hai đơn thức \(2x{y^2}z\) và \( - {x^2}yz\) là
A. Một đơn thức.
B. Một đa thức nhưng không phải đơn thức.
C. Một số.
D. Không xác định.
Quảng cáo
Trả lời:
Phép cộng của hai đơn thức \(2x{y^2}z\) và \( - {x^2}yz\) là \(2x{y^2}z + \left( { - {x^2}yz} \right) = x{y^2}z.\)
Kết quả nhận được là \(x{y^2}z,\) đây một đơn thức.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp số: \[ - {\bf{8}}\].
Ta có \[T = \left( {{x^2} - 6x + 12} \right)\left( {x - 6} \right) - {\left( {x - 4} \right)^3}\]
\[ = {x^3} - 6{x^2} + 12x - 6{x^2} + 36x - 72 - \left( {{x^3} - 12{x^2} + 48x - 64} \right)\]
\[ = {x^3} - 12{x^2} + 48x - 72 - {x^3} + 12{x^2} - 48x + 64\]
\( = \left( {{x^3} - {x^3}} \right) + \left( {12{x^2} - 12{x^2}} \right) + \left( {48x - 48x} \right) + \left( {64 - 72} \right)\)\( = - 8\).
Vậy \(T = - 8.\)
Lời giải
Hướng dẫn giải
Ta có \({a^2} + {b^2} + {c^2} = ab + bc + ca\)
\(2{a^2} + 2{b^2} + 2{c^2} = 2ab + 2bc + 2ca\)
\(2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ca = 0\)
\(\left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{c^2} - 2ac + {a^2}} \right) = 0\)
\({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} = 0\) (*)
Với mọi \(a,\,\,b,\,\,c \in \mathbb{R}\), ta có: \({\left( {a - b} \right)^2} \ge 0\,;\,\,\,{\left( {b - c} \right)^2} \ge 0\,;\,\,{\left( {c - a} \right)^2} \ge 0\).
Khi đó, \({\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\).
Do đó để (*) xảy ra thì \[\left\{ \begin{array}{l}{\left( {a - b} \right)^2} = 0\\{\left( {b - c} \right)^2} = 0\\{\left( {c - a} \right)^2} = 0\end{array} \right.\] hay \[\left\{ \begin{array}{l}a - b = 0\\b - c = 0\\c - a = 0\end{array} \right.\] tức là \[\left\{ \begin{array}{l}a = b\\b = c\\c = a\end{array} \right.\].
Khi đó \[a = b = c\] và \(a + b + c = 2025\)
Do đó \[a = b = c = \frac{{2\,\,025}}{3} = 675.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Một kho chứa có dạng hình chóp tứ giác đều với độ dài cạnh đáy là 6 m và trung đoạn là \[3{\rm{ m}}.\] Người ta muốn sơn phủ bên ngoài cả ba mặt xung quanh của kho chứa đó và không sơn phủ p (ảnh 1)](https://video.vietjack.com/upload2/images/1752817036/1752817098-image6.png)
