Miền tam giác \[ABC\] kể cả ba cạnh sau đây là miền nghiệm của hệ bất phương trình nào trong bốn hệ bất phương trình dưới đây?
Miền tam giác \[ABC\] kể cả ba cạnh sau đây là miền nghiệm của hệ bất phương trình nào trong bốn hệ bất phương trình dưới đây?

A.
B.
C.
D.
Quảng cáo
Trả lời:

Đáp án đúng là: D
Cạnh \[AC\] có phương trình \[x = 0\] và cạnh \[AC\] nằm trong miền nghiệm nên \[x \ge 0\] là một bất phương trình của hệ.
Cạnh \[AB\] qua hai điểm \[\left( {\frac{5}{2};\;0} \right)\] và \[\left( {0;\;2} \right)\] nên có phương trình \[\frac{x}{{\frac{5}{2}}} + \frac{y}{2} = 1 \Leftrightarrow 4x + 5y = 10\].
Vậy hệ bất phương trình cần tìm làHot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số ly trà sữa, \(y\) là số cái bánh flan bán được, \(x \ge 20;\,\,\,20 \le y \le 40\).
Số tiền bỏ ra mua trà sữa và bánh flan để bán là: \(15x + 3y\) (nghìn đồng).
Do số tiền vốn là 630 nghìn đồng nên: \(15x + 3y \le 630\) (nghìn đồng).
Lợi nhuận thu được là \(F = 5x + 2y\), cần tìm \(x,y\) để lợi nhuận lớn nhất.
Theo đề ta có hệ BPT: \(\left\{ \begin{array}{l}15x + 3y \le 630\\x \ge 20\\20 \le y \le 40\end{array} \right.\).
Biểu diễn miền nghiệm của hệ BPT lên hệ trục toạ độ:

Miền nghiệm của hệ BPT là tứ giác ABCD.
Xét các điểm:
- Điểm \(A\) là giao điểm của hai đường \(x = 20\) và \(y = 20\)\( \Rightarrow A\left( {20;20} \right)\).
- Điểm \(B\) là giao điểm của hai đường \(x = 20\) và \(y = 40\)\( \Rightarrow B\left( {20;40} \right)\).
- Điểm \(C\) là giao điểm của hai đường \(y = 40\) và \(15x + 3y = 630\)\( \Rightarrow x = 34 \Rightarrow C\left( {34;40} \right)\).
- Điểm \(D\) là giao điểm của hai đường \(y = 20\) và \(15x + 3y = 630\)\( \Rightarrow x = 38 \Rightarrow D\left( {38;20} \right)\).
Khi đó Giá trị lớn nhất của hàm \(F = 5x + 2y\) đạt tại một trong bốn đỉnh của tứ giác ABCD.
Với \(A\left( {20;20} \right) \Rightarrow F = 5x + 2y = 5.20 + 2.20 = 140\) (nghìn đồng).
Với \(B\left( {20;40} \right) \Rightarrow F = 5x + 2y = 5.20 + 2.40 = 180\) (nghìn đồng).
Với \(C\left( {34;40} \right) \Rightarrow F = 5x + 2y = 5.34 + 2.40 = 250\) (nghìn đồng).
Với \(D\left( {38;20} \right) \Rightarrow F = 5x + 2y = 5.38 + 2.20 = 230\) (nghìn đồng).
Kết luận: Lợi nhuận lớn nhất đạt tại điểm \(C\left( {34;40} \right)\), tức là \(x = 34\) ly trà sữa, \(y = 40\) cái bánh flan. Khi đó lợi nhuận lớn nhất thu được là \(F = 5.34 + 2.40 = 250\) (nghìn đồng).
Đáp án: 250.
Câu 2
A. Trên mặt phẳng tọa độ \(Oxy\), biểu diễn miền nghiệm của hệ bất phương trình đã cho là miền tứ giác \(ABCO\) kể cả các cạnh với \(A\left( {0;3} \right)\), \(B\left( {\frac{{25}}{8};\frac{9}{8}} \right)\), \(C\left( {2;0} \right)\) và \(O\left( {0;0} \right)\).
B. Đường thẳng \(\Delta :x + y = m\) có giao điểm với tứ giác \(ABCO\) kể cả khi \( - 1 \le m \le \frac{{17}}{4}\).
C. Giá trị lớn nhất của biểu thức \(x + y\), với \(x\) và \(y\) thỏa mãn hệ bất phương trình đã cho là \(\frac{{17}}{4}\).
D. Giá trị nhỏ nhất của biểu thức \(x + y\), với \(x\) và \(y\) thỏa mãn hệ bất phương trình đã cho là 0.
Lời giải
Đáp án đúng là: B

Trước hết, ta vẽ bốn đường thẳng:
\(\left( {{d_1}} \right):x - y = 2\)
\(\left( {{d_2}} \right):3x + 5y = 15\)
\(\left( {{d_3}} \right):x = 0\)
\(\left( {{d_4}} \right):y = 0\)
Miền nghiệm là phần không bị gạch, kể cả biên.
Từ đó suy ra các khẳng định ở các đáp án A, C, D là đúng.
Câu 3
D. \(\left( { - \frac{1}{2};\frac{2}{5}} \right) \in S\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
D. \[\left( {0;2} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.