Trong 1 lạng thịt bò chứa \(26\;\)gam protein, 1 lạng cá chứa \(22\) gam protein. Trung bình trong một ngày, một người đàn ông cần từ 56 đến \(91\) gam protein. Theo lời khuyên của bác sĩ, để tốt cho sức khỏe thì không nên ăn thịt nhiều hơn cá. Gọi \(x,y\) lần lượt là số lạng thịt bò, lạng cá mà một người đàn ông ăn trong một ngày.
a) Hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}26x + 22y \ge 56\\26x + 22y \le 91\\x \le y\\x \ge 0\\y \ge 0\end{array}\end{array}} \right.\).
Trong 1 lạng thịt bò chứa \(26\;\)gam protein, 1 lạng cá chứa \(22\) gam protein. Trung bình trong một ngày, một người đàn ông cần từ 56 đến \(91\) gam protein. Theo lời khuyên của bác sĩ, để tốt cho sức khỏe thì không nên ăn thịt nhiều hơn cá. Gọi \(x,y\) lần lượt là số lạng thịt bò, lạng cá mà một người đàn ông ăn trong một ngày.
a) Hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}26x + 22y \ge 56\\26x + 22y \le 91\\x \le y\\x \ge 0\\y \ge 0\end{array}\end{array}} \right.\).
Quảng cáo
Trả lời:

a) Đúng. Hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}26x + 22y \ge 56\\26x + 22y \le 91\\x \le y\\x \ge 0\\y \ge 0\end{array}\end{array}} \right.\).
Câu hỏi cùng đoạn
Câu 2:
b) Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là một ngũ giác.
b) Biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là một ngũ giác.
Lời giải của GV VietJack
b) Sai. Miền nghiệm của hệ trên là miền tứ giác \(ABCD\) với \(A\left( {\frac{7}{6};\frac{7}{6}} \right),B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\), \(C\left( {0;\frac{{91}}{{22}}} \right)\)\(D\left( {0;\frac{{28}}{{11}}} \right)\) ở hình dưới đây:

Câu 3:
c) \(\left( {1;2} \right)\) thuộc miền nghiệm của hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông.
c) \(\left( {1;2} \right)\) thuộc miền nghiệm của hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông.
Lời giải của GV VietJack
c) Đúng. Một nghiệm \(\left( {{x_0};{y_0}} \right)\) của hệ bất phương trình với \({x_0},{y_0}\) là \(\left( {{x_0};{y_0}} \right) = \left( {1;2} \right)\).
Câu 4:
d) Điểm \(B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\) là điểm có hoành độ bé nhất thuộc miền nghiệm của hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông.
d) Điểm \(B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\) là điểm có hoành độ bé nhất thuộc miền nghiệm của hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông.
Lời giải của GV VietJack
d) Sai. Điểm \(B\left( {\frac{{91}}{{48}};\frac{{91}}{{48}}} \right)\) là điểm có hoành độ lớn nhất.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số ly trà sữa, \(y\) là số cái bánh flan bán được, \(x \ge 20;\,\,\,20 \le y \le 40\).
Số tiền bỏ ra mua trà sữa và bánh flan để bán là: \(15x + 3y\) (nghìn đồng).
Do số tiền vốn là 630 nghìn đồng nên: \(15x + 3y \le 630\) (nghìn đồng).
Lợi nhuận thu được là \(F = 5x + 2y\), cần tìm \(x,y\) để lợi nhuận lớn nhất.
Theo đề ta có hệ BPT: \(\left\{ \begin{array}{l}15x + 3y \le 630\\x \ge 20\\20 \le y \le 40\end{array} \right.\).
Biểu diễn miền nghiệm của hệ BPT lên hệ trục toạ độ:

Miền nghiệm của hệ BPT là tứ giác ABCD.
Xét các điểm:
- Điểm \(A\) là giao điểm của hai đường \(x = 20\) và \(y = 20\)\( \Rightarrow A\left( {20;20} \right)\).
- Điểm \(B\) là giao điểm của hai đường \(x = 20\) và \(y = 40\)\( \Rightarrow B\left( {20;40} \right)\).
- Điểm \(C\) là giao điểm của hai đường \(y = 40\) và \(15x + 3y = 630\)\( \Rightarrow x = 34 \Rightarrow C\left( {34;40} \right)\).
- Điểm \(D\) là giao điểm của hai đường \(y = 20\) và \(15x + 3y = 630\)\( \Rightarrow x = 38 \Rightarrow D\left( {38;20} \right)\).
Khi đó Giá trị lớn nhất của hàm \(F = 5x + 2y\) đạt tại một trong bốn đỉnh của tứ giác ABCD.
Với \(A\left( {20;20} \right) \Rightarrow F = 5x + 2y = 5.20 + 2.20 = 140\) (nghìn đồng).
Với \(B\left( {20;40} \right) \Rightarrow F = 5x + 2y = 5.20 + 2.40 = 180\) (nghìn đồng).
Với \(C\left( {34;40} \right) \Rightarrow F = 5x + 2y = 5.34 + 2.40 = 250\) (nghìn đồng).
Với \(D\left( {38;20} \right) \Rightarrow F = 5x + 2y = 5.38 + 2.20 = 230\) (nghìn đồng).
Kết luận: Lợi nhuận lớn nhất đạt tại điểm \(C\left( {34;40} \right)\), tức là \(x = 34\) ly trà sữa, \(y = 40\) cái bánh flan. Khi đó lợi nhuận lớn nhất thu được là \(F = 5.34 + 2.40 = 250\) (nghìn đồng).
Đáp án: 250.
Lời giải
Đáp án đúng là: B

Trước hết, ta vẽ bốn đường thẳng:
\(\left( {{d_1}} \right):x - y = 2\)
\(\left( {{d_2}} \right):3x + 5y = 15\)
\(\left( {{d_3}} \right):x = 0\)
\(\left( {{d_4}} \right):y = 0\)
Miền nghiệm là phần không bị gạch, kể cả biên.
Từ đó suy ra các khẳng định ở các đáp án A, C, D là đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.