Câu hỏi:

19/07/2025 22 Lưu

Để giúp đỡ những người khó khăn, thu nhập thấp được về quê ăn tết đoàn tụ với gia đình, một công ty đã thuê xe dịch vụ cho những chuyến xe nghĩa tình đưa \(180\) người và \(8\)  tấn hàng về quê ăn tết. Nơi thuê xe có hai loại xe A và B, trong đó xe A có \(10\)  chiếc, xe B có \(9\) chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể chở tối đa \(30\) người và \(0,8\)tấn hàng, mỗi xe loại B có thể chở tối đa \(20\) người và \(1,6\) tấn hàng.

a) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê. Khi đó, số tiền cần bỏ ra để thuê xe là \(F\left( {x;y} \right) = 5x + 4y\) (triệu đồng).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê.

Vì một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng nên số tiền cần bỏ ra để thuê xe là \(F\left( {x;y} \right) = 5x + 4y\)(triệu đồng).

Câu hỏi cùng đoạn

Câu 2:

b) Gọi \(x,y\) (xe) lần lượt là số xe loại A và B cần thuê, ta có hệ bất phương trình biểu thị các điều kiện của bài toán là: \(\left\{ \begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array} \right.\left( * \right).\)

Xem lời giải

verified Lời giải của GV VietJack

b) Đúng. Ta có \(x\) xe loại A chở được \(30x\) người và \(0,8x\) tấn hàng; \(y\) xe loại B chở được \(20y\)người và \(1,6y\) tấn hàng.

Suy ra \(x\)xe loại A  và \(y\) xe loại B chở được \(30x + 20y\) và \(0,8x + 1,6y\) tấn hàng.

Ta có hệ bất phương trình sau: \(\left\{ \begin{array}{l}30x + 20y \ge 180\\0,8x + 1,6y \ge 8\\0 \le x \le 10\\0 \le y \le 9\end{array} \right.\left( * \right)\).

Câu 3:

c) Điểm \(M\left( {4\,;2} \right)\) thuộc miền nghiệm của hệ bất phương trình biểu thị các điều kiện của bài toán.

Xem lời giải

verified Lời giải của GV VietJack

c) Sai. Thay tọa độ điểm \(M\left( {4\,;2} \right)\) vào hệ \(\left( * \right)\) không thỏa bất phương trình \(30x + 20y \ge 180\). Do đó điểm \(M\left( {4\,;2} \right)\) không thuộc miền nghiệm của hệ \(\left( * \right)\).

Câu 4:

d) Công ty cần thuê 4 xe loại \(A\) và 3 xe loại \(B\) thì chi phí thấp nhất.

Xem lời giải

verified Lời giải của GV VietJack

d) Đúng.

Công ty cần thuê 4 xe loại A và 3 xe loại B thì chi phí thấp nhất (ảnh 1)

Miền nghiệm của hệ \(\left( * \right)\)là tứ giác ABCD (kể cả bờ) với các đỉnh lần lượt là \(A\left( {0;9} \right),B\left( {4;3} \right),C\left( {10;0} \right),D\left( {10;9} \right).\)

Ta thấy \(F\left( {x;y} \right) = 5x + 4y\) đạt giá trị nhỏ nhất chỉ có thể tại các điểm \(A,B,C,D.\)

Tại \(A\left( {0;9} \right):F = 36\) (triệu đồng).

Tại \(B\left( {4;3} \right):F = 32\) (triệu đồng).

Tại \(C\left( {10;0} \right):F = 50\) (triệu đồng).

Tại \(D\left( {10;9} \right):F = 86\) (triệu đồng).

Như vậy để chi phí thấp nhất cần thuê 4 xe loại A và 3 xe loại B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Hệ bất phương trình bậc nhất hai ẩn \(x,y\) để biểu diễn lượng protein cần thiết trong một ngày cho một người đàn ông là: \(\left\{ {\begin{array}{*{20}{l}}\begin{array}{l}26x + 22y \ge 56\\26x + 22y \le 91\\x \le y\\x \ge 0\\y \ge 0\end{array}\end{array}} \right.\).

Lời giải

a) Đúng. Hệ đã cho là một hệ bất phương trình bậc nhất hai ẩn.

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP