Câu hỏi:

19/07/2025 7 Lưu

Xét sự biến thiên của hàm số \(f\left( x \right) = \frac{3}{x}\) trên khoảng \(\left( {0; + \infty } \right)\). Khẳng định nào sau đây đúng?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

\(\begin{array}{l}\forall {x_1},\,{x_2} \in \left( {0; + \infty } \right):\,{x_1} \ne {x_2}\\f\left( {{x_2}} \right) - f\left( {{x_1}} \right) = \frac{3}{{{x_2}}} - \frac{3}{{{x_1}}} = \frac{{ - 3\left( {{x_2} - {x_1}} \right)}}{{{x_2}{x_1}}} \Rightarrow \frac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} =  - \frac{3}{{{x_2}{x_1}}} < 0\end{array}\)

Vậy hàm số nghịch biến trên khoảng \(\left( {0; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Hàm số xác định khi \(x + 1 \ge 0\), tức là \(x \ge  - 1\).

Vậy tập xác định của hàm số là \(D = \left[ { - 1; + \infty } \right)\).

Lời giải

a) Đúng. Ta có \(T = 3\,000\,000 + 700\,000\left( {x - 3} \right) = 900\,000 + 700\,000x\) (đồng) với điều kiện \(x \ge 3,x \in \mathbb{N}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP