Câu hỏi:

19/07/2025 3 Lưu

Tìm giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^2} + {\left( {x - 3} \right)^2}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Tập xác định \(D = \mathbb{R}\).

+ \(\forall x \in \mathbb{R}:f\left( x \right) = 2{x^2} - 6x + 9 = 2\left( {{x^2} - 3x + \frac{9}{4}} \right) + \frac{9}{2} = 2{\left( {x - \frac{3}{2}} \right)^2} + \frac{9}{2} \ge \frac{9}{2}\).

+ \(f\left( x \right) = \frac{9}{2} \Leftrightarrow x = \frac{3}{2}\).

Vậy \(\mathop {\min }\limits_\mathbb{R} f\left( x \right) = \frac{9}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Hàm số xác định khi \(x + 1 \ge 0\), tức là \(x \ge  - 1\).

Vậy tập xác định của hàm số là \(D = \left[ { - 1; + \infty } \right)\).

Lời giải

a) Đúng. Ta có \(T = 3\,000\,000 + 700\,000\left( {x - 3} \right) = 900\,000 + 700\,000x\) (đồng) với điều kiện \(x \ge 3,x \in \mathbb{N}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP