Câu hỏi:

19/07/2025 3 Lưu

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) thỏa mãn \(f\left( {x + \frac{1}{x}} \right) = {x^3} + \frac{1}{{{x^3}}}\forall x \ne 0\). Tính \(f\left( 3 \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có \(f\left( {x + \frac{1}{x}} \right) = {x^3} + \frac{1}{{{x^3}}}\)\( = {\left( {x + \frac{1}{x}} \right)^3} - 3\left( {x + \frac{1}{x}} \right)\).

Do đó \(f\left( x \right) = {x^3} - 3x\).

Vậy \(f\left( 3 \right) = {3^3} - 3 \cdot 3 = 18\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Hàm số xác định khi \(x + 1 \ge 0\), tức là \(x \ge  - 1\).

Vậy tập xác định của hàm số là \(D = \left[ { - 1; + \infty } \right)\).

Lời giải

a) Đúng. Ta có \(T = 3\,000\,000 + 700\,000\left( {x - 3} \right) = 900\,000 + 700\,000x\) (đồng) với điều kiện \(x \ge 3,x \in \mathbb{N}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP