Câu hỏi:

19/08/2025 62 Lưu

Biết rằng tồn tại \(a \in \mathbb{Z}\) để hàm số \(y = \frac{1}{{x - 4}}\) nghịch biến trên khoảng \(\left( {a; + \infty } \right)\). Gọi \({a_0}\) là giá trị nhỏ nhất của \(a\). Tính \(a_0^2 + 2024\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \(f\left( x \right) = \frac{1}{{x - 4}}\) xác định khi \(x - 4 \ne 0\) tức là \(x \ne 4\) nên tập xác định: \(D = \mathbb{R}\backslash \left\{ 4 \right\}\).

Lấy \({x_1},\,{x_2}\) là hai số tùy ý cùng thuộc mỗi khoảng \(\left( { - \infty ;\,4} \right),\,\left( {4;\, + \infty } \right)\) sao cho \({x_1} < {x_2}\) ta có 
fx1fx2=1x141x24=x2x1x14x24

Do \({x_1} < {x_2}\) nên \({x_2} - {x_1} > 0\).

Mặt khác, khi lấy \({x_1}\) và \({x_2}\) cùng nhỏ hơn 4 hoặc cùng lớn hơn 4 , ta đều có \({x_1} - 4\) và \({x_2} - 4\) luôn cùng dấu nên \(\left( {{x_1} - 4} \right)\left( {{x_2} - 4} \right) > 0\) hay \(f\left( {{x_1}} \right) - f\left( {{x_2}} \right) > 0 \Rightarrow f\left( {{x_1}} \right) > f\left( {{x_2}} \right)\).

Ta kết luận hàm số nghịch biến trên các khoảng \(\left( { - \infty ;4} \right)\) và \(\left( {4; + \infty } \right)\).

Vậy \({a_0} = 4\) và \(a_0^2 + 2024 = 16 + 2024 = 2040\).

Đáp án: \(2040\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có y=3x+5x14=3x+54x1x1=x+9x1.
Điều kiện xác định: x10x+9x10x+90x1>0x+90x1<0x9x>1  TMx9x<1  L1<x9

Suy ra tập xác định của hàm số là \(D = \left( {1;9} \right]\).

Vậy \(a = 1,\,b = 9 \Rightarrow a + b = 10.\)

Đáp án: \(10\).

Lời giải

Đáp án đúng là: B

Hàm số \(y = \frac{{2x + 1}}{{{x^2} - 2x - 3 - m}}\) xác định trên \(\mathbb{R}\) khi phương trình \({x^2} - 2x - 3 - m = 0\) vô nghiệm hay \(\Delta ' = m + 4 < 0 \Leftrightarrow m <  - 4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP