Một con lắc lò xo dao động điều hoà theo phương ngang trên mặt phẳng không ma sát như Hình 1, có vận tốc tức thời cho bởi v(t) = 4cos t, trong đó t tính bằng giây và v(t) tính bằng centimét/giây. Tại thời điểm t = 0, con lắc đó ở vị trí cân bằng. Lập phương trình chuyển động của con lắc đó?
Một con lắc lò xo dao động điều hoà theo phương ngang trên mặt phẳng không ma sát như Hình 1, có vận tốc tức thời cho bởi v(t) = 4cos t, trong đó t tính bằng giây và v(t) tính bằng centimét/giây. Tại thời điểm t = 0, con lắc đó ở vị trí cân bằng. Lập phương trình chuyển động của con lắc đó?

Quảng cáo
Trả lời:
Giả sử con lắc chuyển động theo phương trình: s = s(1). Suy ra s' (t) = v(t), do đó s(t) là một nguyên hàm của v(t). Ta có: \[\int {v\left( t \right)dt} = \int {4cost{\rm{dt}}} = 4sint + C.\]
Suy ra s(t)=4sint+C.
Tại thời điểm t = 0, ta có s(0) = 0, tức là 4sin0 + C = 0, hay C = 0. Vậy phương trình chuyển động của con lắc là: s(t) = 4sint.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).
Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.
Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.
Suy ra C = 24,5.
Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.
b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:
t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Lời giải
Hàm số \({\rm{P}}({\rm{t}})\) là một nguyên hàm của hàm số P ( t ).
Ta có \(\int {{P^\prime }} (t)dt = \int k \sqrt t dt = k\int {{t^{\frac{1}{2}}}} dt = \frac{{2k}}{3} \cdot {t^{\frac{3}{2}}} + C = \frac{{2k}}{3}t\sqrt t + C\).
Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + C\).
Quần thể vi khuẩn ban đầu gồm 500 vi khuẩn nên với \({\rm{t}} = 0\) thì \({\rm{P}} = 500\) hay \({\rm{P}}(0)\) \( = 500\), suy ra \(\frac{{2k}}{3} \cdot 0 \cdot \sqrt 0 + C = 500\), do đó \({\rm{C}} = 500\). Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + 500\).
Vi sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn, tức là khi \({\rm{t}} = 1\) thì \({\rm{P}} = 600\), hay \({\rm{P}}(1) = 600\), suy ra \(\frac{{2k}}{3} \cdot 1 \cdot \sqrt 1 + 500 = 600\), do đó \({\rm{k}} = 150\).
Khi đó, công thức tính số lượng vi khuẩn của quần thể đó tại thời điểm t là:
\(P(t) = \frac{{2 \cdot 150}}{3}t\sqrt t + 500 = 100t\sqrt t + 500\quad (0 \le t \le 10){\rm{. }}\)
Vậy số lượng vi khuẩn của quần thể đó sau 7 ngày là:
\(P(7) = 100 \cdot 7\sqrt 7 + 500 \approx 2352{\rm{ (vi khuan)}}{\rm{. }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.