Câu hỏi:

21/07/2025 6 Lưu

Tính giá trị của biểu thức: \(F = 1 - 2{\sin ^2}55^\circ + 4{\cos ^2}60^\circ - 2{\sin ^2}35^\circ + \tan 55^\circ \tan 35^\circ \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\(F = 1 - 2{\sin ^2}55^\circ  + 4{\cos ^2}60^\circ  - 2{\sin ^2}35^\circ  + \tan 55^\circ \tan 35^\circ \)\[ = 1 - 2{\sin ^2}\left( {90^\circ  - 35^\circ } \right) + 4{\cos ^2}60^\circ  - 2{\sin ^2}35^\circ  + \tan \left( {90^\circ  - 35^\circ } \right)\tan 35^\circ \]\( = 1 - 2{\cos ^2}35^\circ  + 4{\cos ^2}60^\circ  - 2{\sin ^2}35^\circ  + \cot 35^\circ  \cdot \tan 55^\circ \)\( = 1 - 2\left( {{{\sin }^2}35^\circ  + {{\cos }^2}35^\circ } \right) + 4{\cos ^2}60^\circ  + \tan 35^\circ \cot 35^\circ  = 1 - 2 \cdot 1 + 4 \cdot {\left( {\frac{1}{2}} \right)^2} + 1 = 1\).

Đáp án: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì \(\tan \alpha  = 1 \Rightarrow \cos \alpha  \ne 0\). Chia cả tử và mẫu cho \({\cos ^2}\alpha \) ta được:

\(B = \frac{{\left( {{{\sin }^2}\alpha  + 1} \right)\frac{1}{{{{\cos }^2}\alpha }}}}{{\left( {2{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\frac{1}{{{{\cos }^2}\alpha }}}} = \frac{{{{\tan }^2}\alpha  + \frac{1}{{{{\cos }^2}\alpha }}}}{{2 - {{\tan }^2}\alpha }} = \frac{{{{\tan }^2}\alpha  + {{\tan }^2}\alpha  + 1}}{{2 - {{\tan }^2}\alpha }} = 3\).

Đáp án: 3.

Lời giải

a) Đúng. Ta có \(\cot \alpha  = \frac{1}{{\tan \alpha }} = \frac{1}{2}\).

b) Sai. \(\tan \alpha  = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} = 2 > 0 \Rightarrow \sin \alpha  \cdot {\rm{cos}}\alpha  > 0\).

c) Đúng. Vì \(0^\circ  < \alpha  < 90^\circ \) nên \({\rm{cos}}\alpha  > 0\).

Ta có \(1 + {\tan ^2}\alpha  = \frac{1}{{{\rm{co}}{{\rm{s}}^2}\alpha }} \Rightarrow {\rm{co}}{{\rm{s}}^2}\alpha  = \frac{1}{{1 + {2^2}}} = \frac{1}{5} \Rightarrow {\rm{cos}}\alpha  = \frac{{\sqrt 5 }}{5} = \frac{1}{{\sqrt 5 }}\).

d) Sai. Ta có \(\tan \alpha  = \frac{{\sin \alpha }}{{{\rm{cos}}\alpha }} \Rightarrow \sin \alpha  = \tan \alpha  \cdot {\rm{cos}}\alpha  = \frac{{2\sqrt 5 }}{5}\).

Suy ra \({\rm{sin}}\alpha \,{\rm{ + }}\,{\rm{cos}}\alpha  = \frac{{2\sqrt 5 }}{5} + \frac{{\sqrt 5 }}{5} = \frac{{3\sqrt 5 }}{5}\).