Tìm \(m\) để bất phương trình \(mx - 3y < 2\) là bất phương trình bậc nhất hai ẩn?
Quảng cáo
Trả lời:
Đáp án đúng là: A
Bất phương trình bậc nhất hai ẩn \[x\], \[y\] có dạng tổng quát là:
\(ax + by \le c\,\left( {ax + by \ge c;\,ax + by < c;\,ax + by > c} \right)\), trong đó \(a\), \(b\), \(c\) là những số thực đã cho, \(a\) và \(b\) không đồng thời bằng \(0\), \(x\) và \(y\) là các ẩn số.
Do đó, với mọi số thực \(m\) thì bất phương trình \(mx - 3y < 2\) là bất phương trình bậc nhất hai ẩn.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Câu 2
Lời giải
Đáp án đúng là: C
Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì
\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne - 1\).
Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.
Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).
\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m > - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m < - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m < - \frac{3}{2}\end{array} \right.\).
Mà \(m \ne - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
