Câu hỏi:

22/07/2025 32 Lưu

Một trò chơi chọn ô chữ đơn giản mà kết quả gồm một trong hai khả năng: Nếu người chơi chọn được chữ \(A\) thì người ấy được cộng 3 điểm, nếu người chơi chọn được chữ \(B\) thì người ấy bị trừ 1 điểm. Người chơi chỉ chiến thắng khi đạt được số điểm tối thiểu là 20. Gọi \(x,y\) theo thứ tự là số lần người chơi chọn được chữ \(A\) và chữ \(B\).

a) Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ \(B\) là \(y\).

b) Bất phương trình bậc nhất hai ẩn \(x,y\) trong tình huống người chơi chiến thắng là \(3x - y \ge 18\)

c) Người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

d) Người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 3 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đúng. Tổng số điểm người chơi đạt được khi chọn chữ \(A\) là \(3x\), tổng số điểm người chơi bị trừ khi chọn chữ .\(B\). là \(y\).

b) Sai. Với \(x,y \in \mathbb{N}\), ta có bất phương trình: \(3x - y \ge 20\,\,\,\,\,\left( * \right)\).

c) Đúng. Thay cặp số \(\left( {7\,;\,1} \right)\) vào bất phương trình \(\left( * \right):3.7 - 1 \ge 20\) (đúng) suy ra \(\left( {7\,;\,1} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 7 lần và chọn được chữ \(B\) 1 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

d) Sai. Thay cặp số \(\left( {8\,;\,4} \right)\) vào bất phương trình \(\left( * \right):3.8 - 4 \ge 20\) (đúng) suy ra \(\left( {8\,;\,4} \right)\) là một nghiệm của \(\left( * \right)\). Điều này cho thấy nếu người chơi chọn được chữ \(A\) 8 lần và chọn được chữ \(B\) 4 lần thì người đó vừa đủ điểm dành chiến thắng trò chơi.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì

\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne  - 1\).

Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.

Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).

\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m >  - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m <  - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m <  - \frac{3}{2}\end{array} \right.\).

Mà \(m \ne  - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).

Câu 2

Lời giải

Đáp án đúng là: B

Từ hình vẽ ta thấy điểm \[O\left( {0;0} \right)\] thuộc miền nghiệm của bất phương trình cần tìm

Thay điểm \[O\left( {0;0} \right)\] vào biểu thức \[3x - 2y\] ta có \[3.0 - 2.0 >  - 6\].

Do đó hình vẽ trên là miền nghiệm của bất phương trình \(3x - 2y >  - 6\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP