Câu hỏi:

22/07/2025 26 Lưu

Một cửa hàng có kế hoạch nhập về \(110\) chiếc xe mô tô gồm hai loại \(A\) và \(B\) để bán. Mỗi chiếc xe loại \(A\) có giá \(30\) triệu đồng và mỗi chiếc xe loại \(B\) có giá \(50\) triệu đồng. Để số tiền dùng để nhập xe không quá 4 tỉ đồng thì của hàng cần nhập \(m\) chiếc xe loại \(A\) và \(n\) chiếc xe loại \(B\). Khi đó \(m + n\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\), \(y\) lần lượt là số xe loại \(A\) và loại \(B\) cần nhập ( \(x,y \in \mathbb{N}\)).

Tổng số tiền nhập xe là: \(30000000x + 50000000y\) đồng.

Số tiền dùng để nhập xe không quá 4 tỉ đồng, tức là:

\[30000000x + 50000000y \le 4000000000 \Leftrightarrow 3x + 5y \le 400\,\left( * \right)\].

Thay \(x = 70,y = 40\) vào bất phương trình \[\left( * \right)\] ta có: \[410 \le 400\] (vô lý).

Thay \(x = 73,y = 37\) vào bất phương trình \[\left( * \right)\] ta có: \[404 \le 400\] (vô lý).

Thay \(x = 78,y = 32\) vào bất phương trình \[\left( * \right)\] ta có: \[394 \le 400\] (đúng).

Thay \(x = 67,y = 43\) vào bất phương trình \[\left( * \right)\] ta có: \[416 \le 400\] (vô lý).

Vậy trong trường hợp cửa hàng nhập \(78\) xe loại \(A\) và \(32\) xe loại \(B\) thì số tiền dùng để nhập xe không quá 4 tỉ đồng.

Vậy \(m = 78\,;\,\,n = 32 \Rightarrow m + n = 78 + 32 = 110\).

Đáp án: 110.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: C

Để bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) là bậc nhất hai ẩn thì

\({\left( {m + 1} \right)^2} + {\left( {{m^2} + m} \right)^2} > 0\)\( \Leftrightarrow {\left( {m + 1} \right)^2}\left( {1 + {m^2}} \right) > 0 \Leftrightarrow m \ne  - 1\).

Điểm \(M\left( {1;2} \right)\) thuộc miền nghiệm của bất phương trình \(\left( {m + 1} \right)x + \left( {{m^2} + m} \right)y - 1 > 0\) nên tọa độ điểm \(M\left( {1;2} \right)\) thỏa mãn bất phương trình.

Từ đó ta có \(m + 1 + 2\left( {{m^2} + m} \right) - 1 > 0 \Leftrightarrow 2{m^2} + 3m > 0 \Leftrightarrow m\left( {2m + 3} \right) > 0\) \(\left( * \right)\).

\[\left( * \right) \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\2m + 3 > 0\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\2m + 3 < 0\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > 0\\m >  - \frac{3}{2}\end{array} \right.\\\left\{ \begin{array}{l}m < 0\\m <  - \frac{3}{2}\end{array} \right.\end{array} \right.\]\( \Leftrightarrow \left[ \begin{array}{l}m > 0\\m <  - \frac{3}{2}\end{array} \right.\).

Mà \(m \ne  - 1\) nên ta được \(m \in \left( { - \infty ; - \frac{3}{2}} \right) \cup \left( {0; + \infty } \right)\).

Câu 2

Lời giải

Đáp án đúng là: B

Từ hình vẽ ta thấy điểm \[O\left( {0;0} \right)\] thuộc miền nghiệm của bất phương trình cần tìm

Thay điểm \[O\left( {0;0} \right)\] vào biểu thức \[3x - 2y\] ta có \[3.0 - 2.0 >  - 6\].

Do đó hình vẽ trên là miền nghiệm của bất phương trình \(3x - 2y >  - 6\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP