Câu hỏi:

22/07/2025 11 Lưu

Phần III. Trắc nghiệm trả lời ngắn

Xác định số phần tử của tập hợp \(X = \left\{ {n \in \mathbb{N}|n\, \vdots \,4\,,\,n < 2017} \right\}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tập hợp \(X\) gồm các phần tử là những số tự nhiên nhỏ hơn \(2017\) và chia hết cho \(4\).

Từ \(0\) đến \(2015\) có \(2016\) số tự nhiên, ta thấy cứ \(4\) số tự nhiên liên tiếp sẽ có duy nhất một số chia hết cho \(4\). Suy ra có \(504\) số tự nhiên chia hết cho \(4\) từ \(0\) đến \(2015\). Hiển nhiên \(2016\, \vdots \,4\).

Vậy có tất cả \(505\) số tự nhiên nhỏ hơn \(2017\) và chia hết cho \(4\).

Đáp án: 505.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \[x\] là số học sinh chỉ đăng kí môn cờ vua.

\[y\] là số học sinh chỉ đăng kí môn cờ tướng.

\[z\] là số học sinh tham gia cả hai môn này.

Số học sinh đăng kí môn cờ vua là \[17\] học sinh \[ \Rightarrow x + z = 17\]\[ \Leftrightarrow x = 17 - z\].

Số học sinh đăng kí môn cờ tướng là \[28\]học sinh \[ \Rightarrow y + z = 28\]\[ \Leftrightarrow y = 28 - z\].

Vì tổng số học sinh lớp đó là \[40\] học sinh nên ta có:

\[x + y + z = 40\]\[ \Leftrightarrow 17 - z + 28 - z + z = 40\]\[ \Leftrightarrow z = 5\].

Vậy số học sinh đăng kí cả hai môn cờ là \[5\] học sinh.

a) Sai. Có \(23\) học sinh chỉ đăng kí môn cờ tướng.

b) Sai. Số học sinh chỉ đăng kí môn cờ vua là \[12\] học sinh.

c) Đúng. Số học sinh đăng kí môn cờ tướng là \[28\] học sinh.

d) Đúng. Có tất cả \(5\) học sinh đăng kí cả hai môn cờ.

Lời giải

Ta có \(A = \left( { - \infty ; - 2} \right]\) và \(B = \left( { - 5;3} \right]\) suy ra \(A \cap B = \left( { - 5; - 2} \right]\).

Các giá trị nguyên thỏa mãn là \(\left\{ { - 4; - 3; - 2} \right\}\).

Tổng các giá trị nguyên là \( - 4 + \left( { - 3} \right) + \left( { - 2} \right) =  - 9\).

Đáp án: −9.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP