Quảng cáo
Trả lời:
Đáp án đúng là: B
Mệnh đề A sai vì ba số tự nhiên liên tiếp \(n,n + 1,n + 2\) luôn có ít nhất 1 số chẵn nên tích của chúng là số chẵn.
Mệnh đề B đúng vì \({x^2} < 4 \Leftrightarrow \left| x \right| < 2 \Leftrightarrow - 2 < x < 2\).
Mệnh đề C sai vì \({n^2}\) luôn chia hết cho 3 hoặc chia 3 dư 1 nên \({n^2} + 1\) hoặc chia 3 dư 1 hoặc chia 3 dư 2 hay \({n^2} + 1\) không chia hết cho 3 với mọi \(n \in \mathbb{N}\).
Mệnh đề D sai vì \({x^2} \ge 9 \Leftrightarrow \left| x \right| \ge 3 \Leftrightarrow \left[ \begin{array}{l}x \ge 3\\x \le - 3\end{array} \right.\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(A \Rightarrow B\) là mệnh đề sai do A đúng, B sai.
\(B \Rightarrow C\) là mệnh đề đúng do B, C đều sai.
\(A \Rightarrow D\) là mệnh đề sai do A đúng, D sai.
Vậy có hai mệnh đề sai.
Đáp án: 2.
Lời giải
Phủ định của mệnh đề \(P\) là \(\bar P:\) “\({x^2} - 3x + 4 = 0\) có nghiệm” hoặc \(\bar P:\)“\({x^2} - 3x + 4 = 0\) không vô nghiệm”.
Vậy có 2 mệnh đề thỏa mãn. Mệnh đề còn lại không phải là phủ định của mệnh đề \(P\).
Đáp án: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.