Quảng cáo
Trả lời:

Đáp án đúng là: B
Khi \[n = 3\] thì giá trị của \[\left( {{n^2} + 11n + 2} \right)\] bằng \[44 \vdots 11\] nên đáp án A đúng.
Tồn tại số nguyên tố \[5\] chia hết cho \[5\] nên đáp án C đúng.
Phương trình nên đáp án D đúng.
Xét đáp án B:
Khi \[n = 2k,\,k \in \mathbb{N} \Rightarrow {n^2} + 1 = 4{k^2} + 1\] không chia hết cho \[4\], \[k \in \mathbb{N}\].
Khi \[n = 2k + 1,\,k \in N \Rightarrow {n^2} + 1 = {\left( {2k + 1} \right)^2} + 1 = 4{k^2} + 4k + 2\] không chia hết cho \[4\], \[k \in \mathbb{N}\].
Vậy đáp án B sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Mệnh đề đảo của mệnh đề \(A \Rightarrow B\) là \(B \Rightarrow A\). Vậy mệnh đề đảo của mệnh đề \(A \Rightarrow B\) là: Nếu \({a^2} > {b^2}\) thì \(a,\,b \in \mathbb{R};\,a > b > 0\).
b) Đúng. Nếu \(a,\,b \in \mathbb{R};\,a > b > 0\) thì \({a^2} > {b^2}\) là mệnh đề đúng
c) Sai. Mệnh đề đảo của mệnh đề \(A \Rightarrow B\) là: Nếu \({a^2} > {b^2}\) thì \(a,\,b \in \mathbb{R};\,a > b > 0\) là mệnh đề sai vì ví dụ \({\left( { - 5} \right)^2} > {\left( { - 3} \right)^2}\) nhưng \( - 5 < - 3\).
d) Đúng. Vì mệnh đề \(B \Rightarrow A\) sai nên mệnh đề \(A \Leftrightarrow B\) là mệnh đề sai.
Lời giải
\(A \Rightarrow B\) là mệnh đề sai do A đúng, B sai.
\(B \Rightarrow C\) là mệnh đề đúng do B, C đều sai.
\(A \Rightarrow D\) là mệnh đề sai do A đúng, D sai.
Vậy có hai mệnh đề sai.
Đáp án: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.