Câu hỏi:

22/07/2025 4 Lưu

Chủ một trung tâm thương mại muốn cho thuê một số gian hàng như nhau. Người đó muốn tăng giá cho thuê của mỗi gian hàng thêm \(x\) (triệu đồng) \(\left( {x \ge 0} \right)\). Tốc độ thay đổi doanh thu từ các gian hàng đó được biểu diễn bởi hàm số \(T'\left( x \right) =  - 20x + 300\), trong đó \(T'\left( x \right)\) tính bằng triệu đồng (Nguồn: R.Larson anh B. Edwards, Calculus 10e, Cengage). Biết rằng nếu người đó tăng giá thuê cho mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12 000 triệu đồng. Tìm giá trị của \(x\) để người đó có doanh thu là cao nhất?

Trả lời: ………………………….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời: 15

Ta có: \(T\left( x \right) = \int {T'\left( x \right){\rm{d}}x}  = \int {\left( { - 20x + 300} \right){\rm{d}}x}  =  - 10{x^2} + 300x + C,\,C \in \mathbb{R}\).

Khi người đó tăng giá cho thuê mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12 000 triệu đồng. Nên ứng với \(x = 10\) ta có \(T\left( {10} \right) = 12\,000\) suy ra

\(12000 =  - {10.10^2} + 300.10 + C \Rightarrow C = 10000\).

Vậy \(T\left( x \right) =  - 10{x^2} + 300x + 10000\). Ta có \(T\left( x \right)\) là một hàm bậc hai với hệ số \(a < 0\) và đồ thị hàm số có đỉnh là \(I\left( {15;12250} \right)\).

Vậy doanh thu cao nhất mà người đó có thể thu về là 12 250 triệu đồng và khi đó mỗi gian hàng đã tăng giá cho thuê thêm 15 triệu đồng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có :

\(h'\left( t \right) = 3a{t^2} + bt\)

\[ \Rightarrow h\left( t \right) = \int {\left( {3a{t^2} + bt} \right)} dt = a{t^3} + \frac{1}{2}b{t^2} + C\]

\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2} + C\]

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2}\]

Sau 5 giây thì thể tích nước trong bể là : \[h\left( 5 \right) = 150 \Leftrightarrow 125a + \frac{{25}}{2}b = 150\]

Sau 10 giây thì thể tích nước trong bể là :\[h\left( {10} \right) = 1100 \Leftrightarrow 1000a + 50b = 1100\]

Ta có hệ : \[\left\{ \begin{array}{l}125a + \frac{{25}}{2}b = 150\\1000a + 50b = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\]

\[ \Rightarrow h\left( t \right) = {t^3} + {t^2}\]

thể tích nước trong bể sau khi bơm được 20 giây là \[h\left( {20} \right) = {20^3} + {20^2} = 8400{m^3}\]

Lời giải

Trả lời: 11

Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t}  = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t}  =  - \frac{{9,81}}{2}{t^2} + 29,43t + C\).

Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).

Vậy \(h\left( t \right) =  - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).

Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx  - 5\).

Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).