Trong một đợt xả lũ, nhà máy thủy điện đã xả lũ trong 40 phút với tốc độ lưu lượng nước tại thời điểm t giây là \(h'\left( t \right) = 10t + 500\left( {{m^3}/s} \right)\). Hỏi sau thời gian xả lũ trên thì hồ thoát nước của nhà máy đã thoát đi một lượng nước là bao nhiêu?
Trả lời: ………………………….
Trong một đợt xả lũ, nhà máy thủy điện đã xả lũ trong 40 phút với tốc độ lưu lượng nước tại thời điểm t giây là \(h'\left( t \right) = 10t + 500\left( {{m^3}/s} \right)\). Hỏi sau thời gian xả lũ trên thì hồ thoát nước của nhà máy đã thoát đi một lượng nước là bao nhiêu?
Trả lời: ………………………….
Câu hỏi trong đề: (Trả lời ngắn) 22 bài tập Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Ta có :
\(h'\left( t \right) = 10t + 500\)
\( \Rightarrow h\left( t \right) = \int {\left( {10t + 500} \right)} dx = 5{t^2} + 500t + C\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t + C\)
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\( \Rightarrow h\left( t \right) = 5{t^2} + 500t\)
thủy điện đã xả lũ trong 40 phút = 2400 giây thì thoát đi một lượng nước là:
\(h\left( {2400} \right) = {5.2400^2} + 500.2400 = {3.10^3}\left( {{m^3}} \right)\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:
\(s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 3t + 15} \right)} \,dx = - \frac{{3{t^2}}}{2} + 15t + C\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 3t + 15 = 0 \Rightarrow t = 5\).
Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây
b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:
\(s\left( 5 \right) = - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)
Do \(50 > 37,5\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.
c) người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[15m\] trong 1 giây
Tổng quãng đường xe đi được đến khi dừng hẳn là : \[15 + 37,5 = 52,5\left( m \right)\]
Do \(50 < 52,5\) nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.
Lời giải
Ta có :
\(h'\left( t \right) = \frac{1}{5}\sqrt[3]{t}\)
\( \Rightarrow h\left( t \right) = \int {\frac{1}{5}\sqrt[3]{t}} dx = \frac{1}{5}\int {{t^{\frac{1}{3}}}} dx = \frac{1}{5}\frac{{{t^{\frac{1}{3} + 1}}}}{{\frac{1}{3} + 1}} + C = \frac{3}{{20}}t\sqrt[3]{t} + C\)
\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t} + C\)
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t}\)
mức nước ở bồn sau khi bơm nước được 6 giây: \(h\left( 6 \right) = \frac{3}{{20}}.6\sqrt[3]{6} \approx 1,64m\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.