Mực nước trong hồ chứa của nhà máy điện thủy triều thay đổi trong suốt một ngày do nước chảy ra khi thủy triều xuống và nước chảy vào khi thủy triều lên (như hình vẽ). Tốc độ thay đổi của mực nước được xác định bởi hàm số \(h'(t) = \frac{1}{{90}}\left( {{t^2} - 17t + 60} \right)\), trong đó \(t\) tính bằng giờ \(\left( {0 \le t \le 24} \right)\), \(h'(t)\) tính bằng mét/giờ. Tại thời điểm \(t = 0\), mực nước trong hồ chứa cao \(8m\). Mực nước trong hồ cao nhất và thấp nhất bao nhiêu?

Trả lời: ………………………….
Câu hỏi trong đề: (Trả lời ngắn) 22 bài tập Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Ta có:
\(h'(t) = \frac{1}{{90}}\left( {{t^2} - 17t + 60} \right)\)
\( \Rightarrow h(t) = \frac{1}{{90}}\int {\left( {{t^2} - 17t + 60} \right)dt = } \frac{1}{{90}}\left( {\frac{1}{3}{t^3} - \frac{{17}}{2}{t^2} + 60t} \right) + C\)
\( \Rightarrow h(t) = \frac{1}{{90}}\left( {\frac{1}{3}{t^3} - \frac{{17}}{2}{t^2} + 60t} \right) + C\)
Tại thời điểm \(t = 0\), mực nước trong hồ chứa cao \(8m\) nên \(h(0) = 8 \Rightarrow C = 8\)
\( \Rightarrow h(t) = \frac{1}{{90}}\left( {\frac{1}{3}{t^3} - \frac{{17}}{2}{t^2} + 60t} \right) + 8{\rm{ }}\left( {0 \le t \le 24} \right)\)
Ta có: \(h'(t) = 0 \Leftrightarrow {t^2} - 17t + 60 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 5\\t = 12\end{array} \right.\)
Lập bảng biến thiên:

Mực nước trong hồ cao nhất : \(\frac{{104}}{5} = 20,8m\)
Mực nước trong hồ thấp nhất \(8m\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:
\(s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 3t + 15} \right)} \,dx = - \frac{{3{t^2}}}{2} + 15t + C\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t + C\)
Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)
\( \Rightarrow C = 0\)
\( \Rightarrow s\left( t \right) = - \frac{{3{t^2}}}{2} + 15t\)
Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow - 3t + 15 = 0 \Rightarrow t = 5\).
Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây
b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:
\(s\left( 5 \right) = - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)
Do \(50 > 37,5\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.
c) người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[15m\] trong 1 giây
Tổng quãng đường xe đi được đến khi dừng hẳn là : \[15 + 37,5 = 52,5\left( m \right)\]
Do \(50 < 52,5\) nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.
Lời giải
Ta có :
\(h'\left( t \right) = \frac{1}{5}\sqrt[3]{t}\)
\( \Rightarrow h\left( t \right) = \int {\frac{1}{5}\sqrt[3]{t}} dx = \frac{1}{5}\int {{t^{\frac{1}{3}}}} dx = \frac{1}{5}\frac{{{t^{\frac{1}{3} + 1}}}}{{\frac{1}{3} + 1}} + C = \frac{3}{{20}}t\sqrt[3]{t} + C\)
\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t} + C\)
Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)
\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t}\)
mức nước ở bồn sau khi bơm nước được 6 giây: \(h\left( 6 \right) = \frac{3}{{20}}.6\sqrt[3]{6} \approx 1,64m\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.