Câu hỏi:

24/07/2025 91 Lưu

 Một bác thợ xây bơm nước vào bể chứa nước. Gọi \(h\left( t \right)\) là thể tích nước bơm được sau \(t\) giây. Cho \(h'\left( t \right) = 3a{t^2} + bt{\rm{ }}\left( {{m^3}/s} \right)\) và ban đầu bể không có nước. Sau 5 giây thì thể tích nước trong bể là 1100m3. Sau 10 giây thì thể tích nước trong bể là 150m3. Hỏi thể tích nước trong bể sau khi bơm được 20 giây là bao nhiêu.

Trả lời: ………………………….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có :

\(h'\left( t \right) = 3a{t^2} + bt\)

\[ \Rightarrow h\left( t \right) = \int {\left( {3a{t^2} + bt} \right)} dt = a{t^3} + \frac{1}{2}b{t^2} + C\]

\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2} + C\]

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\[ \Rightarrow h\left( t \right) = a{t^3} + \frac{1}{2}b{t^2}\]

Sau 5 giây thì thể tích nước trong bể là : \[h\left( 5 \right) = 150 \Leftrightarrow 125a + \frac{{25}}{2}b = 150\]

Sau 10 giây thì thể tích nước trong bể là :\[h\left( {10} \right) = 1100 \Leftrightarrow 1000a + 50b = 1100\]

Ta có hệ : \[\left\{ \begin{array}{l}125a + \frac{{25}}{2}b = 150\\1000a + 50b = 1100\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\]

\[ \Rightarrow h\left( t \right) = {t^3} + {t^2}\]

thể tích nước trong bể sau khi bơm được 20 giây là \[h\left( {20} \right) = {20^3} + {20^2} = 8400{m^3}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:

\(s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 3t + 15} \right)} \,dx =  - \frac{{3{t^2}}}{2} + 15t + C\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t + C\)

Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)

\( \Rightarrow C = 0\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t\)

Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow  - 3t + 15 = 0 \Rightarrow t = 5\).

Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây

b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:

\(s\left( 5 \right) =  - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)

Do \(50 > 37,5\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.

c) người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[15m\] trong 1 giây

Tổng quãng đường xe đi được đến khi dừng hẳn là : \[15 + 37,5 = 52,5\left( m \right)\]

Do \(50 < 52,5\) nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.

Lời giải

Trả lời: 15

Ta có: \(T\left( x \right) = \int {T'\left( x \right){\rm{d}}x}  = \int {\left( { - 20x + 300} \right){\rm{d}}x}  =  - 10{x^2} + 300x + C,\,C \in \mathbb{R}\).

Khi người đó tăng giá cho thuê mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12 000 triệu đồng. Nên ứng với \(x = 10\) ta có \(T\left( {10} \right) = 12\,000\) suy ra

\(12000 =  - {10.10^2} + 300.10 + C \Rightarrow C = 10000\).

Vậy \(T\left( x \right) =  - 10{x^2} + 300x + 10000\). Ta có \(T\left( x \right)\) là một hàm bậc hai với hệ số \(a < 0\) và đồ thị hàm số có đỉnh là \(I\left( {15;12250} \right)\).

Vậy doanh thu cao nhất mà người đó có thể thu về là 12 250 triệu đồng và khi đó mỗi gian hàng đã tăng giá cho thuê thêm 15 triệu đồng.