Câu hỏi:

24/07/2025 25 Lưu

 Gọi \(h(t)\)là chiều cao của cây keo (tính theo mét) sau khi trồng \(t\) năm. Biết rằng năm đầu tiên cây cao 1,5m, trong những năm tiếp theo, cây phát triển với tốc độ \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\) (mét /năm). Sau bao nhiêu năm cây cao được 3m.

Trả lời: ………………………….

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: \(h'(t) = \frac{1}{{\sqrt[4]{t}}}\)\( \Rightarrow h(t) = \int {\frac{1}{{\sqrt[4]{t}}}} dt = \int {{t^{ - \frac{1}{4}}}} dt = \frac{{{t^{ - \frac{1}{4} + 1}}}}{{^{ - \frac{1}{4} + 1}}} + C = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + C\)

năm đầu tiên cây cao 1m nên \(h(1) = 1,5 \Leftrightarrow 1,5 = \frac{4}{3}\sqrt[4]{1} + C \Rightarrow C = \frac{1}{6}\)

\( \Rightarrow h(t) = \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6}\)

cây cao được 3m nên \(h(t) = 3 \Leftrightarrow \frac{4}{3}\sqrt[4]{{{t^3}}} + \frac{1}{6} = 3 \Leftrightarrow \sqrt[4]{{{t^3}}} = \frac{{17}}{8} \Rightarrow t \approx 2,73\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:

\(s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 3t + 15} \right)} \,dx =  - \frac{{3{t^2}}}{2} + 15t + C\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t + C\)

Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)

\( \Rightarrow C = 0\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t\)

Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow  - 3t + 15 = 0 \Rightarrow t = 5\).

Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây

b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:

\(s\left( 5 \right) =  - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)

Do \(50 > 37,5\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.

c) người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[15m\] trong 1 giây

Tổng quãng đường xe đi được đến khi dừng hẳn là : \[15 + 37,5 = 52,5\left( m \right)\]

Do \(50 < 52,5\) nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.

Lời giải

Trả lời: 15

Ta có: \(T\left( x \right) = \int {T'\left( x \right){\rm{d}}x}  = \int {\left( { - 20x + 300} \right){\rm{d}}x}  =  - 10{x^2} + 300x + C,\,C \in \mathbb{R}\).

Khi người đó tăng giá cho thuê mỗi gian hàng thêm 10 triệu đồng thì doanh thu là 12 000 triệu đồng. Nên ứng với \(x = 10\) ta có \(T\left( {10} \right) = 12\,000\) suy ra

\(12000 =  - {10.10^2} + 300.10 + C \Rightarrow C = 10000\).

Vậy \(T\left( x \right) =  - 10{x^2} + 300x + 10000\). Ta có \(T\left( x \right)\) là một hàm bậc hai với hệ số \(a < 0\) và đồ thị hàm số có đỉnh là \(I\left( {15;12250} \right)\).

Vậy doanh thu cao nhất mà người đó có thể thu về là 12 250 triệu đồng và khi đó mỗi gian hàng đã tăng giá cho thuê thêm 15 triệu đồng.