Câu hỏi:

24/07/2025 223 Lưu

Gọi \(h\left( t \right){\rm{ }}\left( m \right)\) là mực nước ở bồn chứa sau khi bơm nước được t giây. Biết rằng \(h'\left( t \right) = \frac{1}{5}\sqrt[3]{t}{\rm{  }}\left( {m/s} \right)\) và lúc đầu bồn không có nước. Tìm mức nước ở bồn sau khi bơm nước được 6 giây (làm tròn kết quả đến hàng phần trăm).

Trả lời: ………………………….

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có :

\(h'\left( t \right) = \frac{1}{5}\sqrt[3]{t}\)

\( \Rightarrow h\left( t \right) = \int {\frac{1}{5}\sqrt[3]{t}} dx = \frac{1}{5}\int {{t^{\frac{1}{3}}}} dx = \frac{1}{5}\frac{{{t^{\frac{1}{3} + 1}}}}{{\frac{1}{3} + 1}} + C = \frac{3}{{20}}t\sqrt[3]{t} + C\)

\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t} + C\)

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t}\)

mức nước ở bồn sau khi bơm nước được 6 giây: \(h\left( 6 \right) = \frac{3}{{20}}.6\sqrt[3]{6} \approx 1,64m\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) quãng đường xe ô tô đi được trong thời gian \(t\) (giây) là một nguyên hàm của \(v\left( t \right)\) nên:

\(s\left( t \right) = \int {v\left( t \right)} dx = \int {\left( { - 3t + 15} \right)} \,dx =  - \frac{{3{t^2}}}{2} + 15t + C\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t + C\)

Chọn \(t = 0 \Rightarrow s\left( 0 \right) = 0\)

\( \Rightarrow C = 0\)

\( \Rightarrow s\left( t \right) =  - \frac{{3{t^2}}}{2} + 15t\)

Khi xe dừng hẳn thì \(v\left( t \right) = 0 \Leftrightarrow  - 3t + 15 = 0 \Rightarrow t = 5\).

Thời gian kể từ lúc đạp phanh đến khi dừng hẳn là 5 giây

b) Sau khi đạp phanh đến khi dừng hẳn, xe đi được quãng đường:

\(s\left( 5 \right) =  - \frac{{{{3.5}^2}}}{2} + 15.5 = 37,5\left( m \right)\)

Do \(50 > 37,5\) nên xe ô tô dừng hẳn trước khi va chạm chướng ngại vật. Vì thế tai nạn không xảy ra.

c) người lái xe nhìn thấy chướng ngại vật trên đường, sau đó 1 giây mới phản ứng đạp phanh nên xe đi được quãng đường \[15m\] trong 1 giây

Tổng quãng đường xe đi được đến khi dừng hẳn là : \[15 + 37,5 = 52,5\left( m \right)\]

Do \(50 < 52,5\) nên xe ô tô va chạm chướng ngại vật. Vì thế tai nạn xảy ra.

Lời giải

Trả lời: 11

Ta có: \(h\left( t \right) = \int {v\left( t \right){\rm{d}}t}  = \int {\left( { - 9,81t + 29,43} \right){\rm{d}}t}  =  - \frac{{9,81}}{2}{t^2} + 29,43t + C\).

Vì vật được ném lên từ độ cao 300 m nên \(h\left( 0 \right) = 300 \Rightarrow C = 300\).

Vậy \(h\left( t \right) =  - \frac{{9,81}}{2}{t^2} + 29,43t + 300\). Khi vật bắt đầu chạm đất ứng với \(h\left( t \right) = 0\).

Nên ta có: \( - \frac{{9,81}}{2}{t^2} + 29,43t + 300 = 0 \Leftrightarrow t \approx 11\) hoặc \(t \approx  - 5\).

Do \(t > 0\) nên \(t \approx 11\,\left( {\rm{s}} \right)\).