Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm \(t\) giây (coi \(t = 0\) là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi \(v(t) = 160 - 9,8t(\;{\rm{m}}/{\rm{s}})\). Tìm độ cao của viên đạn (tính từ mặt đất):
a) Sau \(t = 5\) giây;
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm \(t\) giây (coi \(t = 0\) là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi \(v(t) = 160 - 9,8t(\;{\rm{m}}/{\rm{s}})\). Tìm độ cao của viên đạn (tính từ mặt đất):
a) Sau \(t = 5\) giây;
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).
Quảng cáo
Trả lời:
Ta đã biết độ cao \(h(t)\) của vién đạn (tính từ mặt đất) tại thời điểm \(t\) thoả mān \({h^\prime }(t) = v(t)\) nên \(h(t)\) là nguyên hàm của hàm vận tốc \(v(t)\). Ta có:
\(\int v (t){\rm{d}}t = \int {(160 - 9,8t)} {\rm{d}}t = 160t - 4,9{t^2} + C\)
Do đó, độ cao \(h(t)\) có dạng \(h(t) = 160t - 4,9{t^2} + C\). Kết hợp với giả thiết \(h(0) = 0\) ta được \(C = 0\) và \(h(t) = 160t - 4,9{t^2}(\;{\rm{m}})\).
a) Sau thời gian \(t = 5\) (giây), độ cao của viên đạn là:
\(h = h(5) = 160 \cdot 5 - 4,9 \cdot {5^2} = 677,5(\;{\rm{m}})\)
b) Khi viên đạn đạt độ cao lớn nhất thì \(v(t) = 160 - 9,8t = 0\).
Từ đó ta có \(t = {t_{x\pi }} \approx 16,3\) (giây).
Độ cao lớn nhất của viên đạn là \({h_{\max }} = h\left( {{t_w}} \right) \approx 160 \cdot 16,3 - 4,9 \cdot {16,3^2} \approx 1360,1(\;{\rm{m}})\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).
Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.
Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.
Suy ra C = 24,5.
Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.
b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:
t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Lời giải
Hàm số \(M(t)\) là một nguyên hàm của hàm số \(m(t)\).
Ta có \(\int m (t)dt = \int {(800 - 2t)} dt = \int 8 00dt - \int 2 tdt = 800t - {t^2} + C\).
Suy ra \(M(t) = 800t - {t^2} + C\).
Tại \({\rm{t}} = 0\) thì \({\rm{M}}({\rm{t}}) = {\rm{M}}(0) = 0\).
Do đó \(800 \cdot 0 - {0^2} + C = 0\), suy ra \(C = 0\).
Khi đó, \(M({\rm{t}}) = 800{\rm{t}} - {{\rm{t}}^2}(0 \le {\rm{t}} \le 400)\).
Số ngày công tính đến khi hoàn thành dự án là
\(M(400) = 800 \cdot 400 - {400^2} = 160000\) (ngày công).
Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành dự án) là
\(160000 \cdot 400000 = 6,4 \cdot {10^{10}}\) (đồng) \( = 64\) (tỷ đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.