Câu hỏi:

22/07/2025 3 Lưu

     Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm \(t\) giây (coi \(t = 0\) là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi \(v(t) = 160 - 9,8t(\;{\rm{m}}/{\rm{s}})\). Tìm độ cao của viên đạn (tính từ mặt đất):

a) Sau \(t = 5\) giây;

b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta đã biết độ cao \(h(t)\) của vién đạn (tính từ mặt đất) tại thời điểm \(t\) thoả mān \({h^\prime }(t) = v(t)\) nên \(h(t)\) là nguyên hàm của hàm vận tốc \(v(t)\). Ta có:

\(\int v (t){\rm{d}}t = \int {(160 - 9,8t)} {\rm{d}}t = 160t - 4,9{t^2} + C\)

Do đó, độ cao \(h(t)\) có dạng \(h(t) = 160t - 4,9{t^2} + C\). Kết hợp với giả thiết \(h(0) = 0\) ta được \(C = 0\) và \(h(t) = 160t - 4,9{t^2}(\;{\rm{m}})\).

a) Sau thời gian \(t = 5\) (giây), độ cao của viên đạn là:

\(h = h(5) = 160 \cdot 5 - 4,9 \cdot {5^2} = 677,5(\;{\rm{m}})\)

b) Khi viên đạn đạt độ cao lớn nhất thì \(v(t) = 160 - 9,8t = 0\).

Từ đó ta có \(t = {t_{x\pi }} \approx 16,3\) (giây).

Độ cao lớn nhất của viên đạn là \({h_{\max }} = h\left( {{t_w}} \right) \approx 160 \cdot 16,3 - 4,9 \cdot {16,3^2} \approx 1360,1(\;{\rm{m}})\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).

Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.

Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.

Suy ra C = 24,5.

Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.

b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:

t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.

Lời giải

Hàm số \(M(t)\) là một nguyên hàm của hàm số \(m(t)\).

Ta có \(\int m (t)dt = \int {(800 - 2t)} dt = \int 8 00dt - \int 2 tdt = 800t - {t^2} + C\).

Suy ra \(M(t) = 800t - {t^2} + C\).

Tại \({\rm{t}} = 0\) thì \({\rm{M}}({\rm{t}}) = {\rm{M}}(0) = 0\).

Do đó \(800 \cdot 0 - {0^2} + C = 0\), suy ra \(C = 0\).

Khi đó, \(M({\rm{t}}) = 800{\rm{t}} - {{\rm{t}}^2}(0 \le {\rm{t}} \le 400)\).

Số ngày công tính đến khi hoàn thành dự án là

\(M(400) = 800 \cdot 400 - {400^2} = 160000\) (ngày công).

Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành dự án) là

\(160000 \cdot 400000 = 6,4 \cdot {10^{10}}\) (đồng) \( = 64\) (tỷ đồng).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP