Kí hiệu \(h(x)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao \(2\;{\rm{m}}\). Trong 10 năm tiếp theo, cây phát triền với tốc độ \({h^\prime }(x) = \frac{1}{x}(\;{\rm{m}}/{\rm{nam}})\).
a) Xác định chiều cao của cây sau \(x\) năm \((1 \le x \le 11)\).
b) Sau bao nhiêu năm cây cao \(3\;{\rm{m}}\) ?
Kí hiệu \(h(x)\) là chiều cao của một cây (tính theo mét) sau khi trồng \(x\) năm. Biết rằng sau năm đầu tiên cây cao \(2\;{\rm{m}}\). Trong 10 năm tiếp theo, cây phát triền với tốc độ \({h^\prime }(x) = \frac{1}{x}(\;{\rm{m}}/{\rm{nam}})\).
a) Xác định chiều cao của cây sau \(x\) năm \((1 \le x \le 11)\).
b) Sau bao nhiêu năm cây cao \(3\;{\rm{m}}\) ?
Quảng cáo
Trả lời:
a) \(h(x) = \int {{h^\prime }} (x){\rm{d}}x = \int {\frac{1}{x}} \;{\rm{d}}x = \ln x + C\) với \(1 \le x \le 11\).
Vì \(h(1) = 2\) nên \(\ln 1 + C = 2\), suy ra \(C = 2\).
Vậy chiều cao của cây sau \(x\) năm là \(h(x) = \ln x + 2(1 \le x \le 11)\).
b) Ta có \(h(x) = 3 \Leftrightarrow \ln x + 2 = 3 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \approx 2,718\) năm.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).
Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.
Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.
Suy ra C = 24,5.
Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.
b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:
t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Lời giải
Hàm số \(M(t)\) là một nguyên hàm của hàm số \(m(t)\).
Ta có \(\int m (t)dt = \int {(800 - 2t)} dt = \int 8 00dt - \int 2 tdt = 800t - {t^2} + C\).
Suy ra \(M(t) = 800t - {t^2} + C\).
Tại \({\rm{t}} = 0\) thì \({\rm{M}}({\rm{t}}) = {\rm{M}}(0) = 0\).
Do đó \(800 \cdot 0 - {0^2} + C = 0\), suy ra \(C = 0\).
Khi đó, \(M({\rm{t}}) = 800{\rm{t}} - {{\rm{t}}^2}(0 \le {\rm{t}} \le 400)\).
Số ngày công tính đến khi hoàn thành dự án là
\(M(400) = 800 \cdot 400 - {400^2} = 160000\) (ngày công).
Chi phí nhân công lao động của công trình đó (cho đến lúc hoàn thành dự án) là
\(160000 \cdot 400000 = 6,4 \cdot {10^{10}}\) (đồng) \( = 64\) (tỷ đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.