Câu hỏi:

24/07/2025 61 Lưu

Doanh thu bán hàng của một công ty khi bán một loại sản phẩm là số tiền R(x) (triệu đồng) thu được khi x đơn vị sản phẩm được bán ra. Tốc độ biến động (thay đổi) của doanh thu khi x đơn vị sản phẩm đã được bản là hàm số \[{M_R}(x) = R'(x)\]. Một công ty công nghệ cho biết, tốc độ biến đổi của doanh thu khi bán một loại con chíp của hãng được cho bởi \[{M_R}\left( x \right) = 300 - 0,1x\], ở đó x là số lượng chíp đã bán. Tìm doanh thu của công ty khi đã bản 1.000 con chíp.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \({R^\prime }(x) = {M_R}(x){\rm{. }}\)

Cho trước hàm tốc độ biến động của doanh thu \({M_R}(x)\) khi \(x\) đơn vị sản phẩm được bán ra thì \(R(x)\) là một nguyên hàm của \({M_R}(x)\). Do đó

\(R(x) = \int {{M_R}} (x){\rm{d}}x = \int {(300 - 0,1x)} {\rm{d}}x = 300x - \frac{{0,1{x^2}}}{2} + C\)

Từ ý nghĩa thực tiễn, \(R(0) = 0\) nên \(C = 0\). Từ đó tìm được \(R(1000) = 200000\) (triệu đồng).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có:

\(\begin{array}{l}\int {{h^\prime }} (t){\rm{d}}t = \int {\frac{1}{{216}}} \left( {5{t^2} - 120t + 480} \right){\rm{d}}t = \frac{1}{{216}}\int {\left( {5{t^2} - 120t + 480} \right)} {\rm{d}}t = \frac{5}{{216}}\int {{t^2}} \;{\rm{d}}t - \frac{{120}}{{216}}\int t \;{\rm{d}}t + \frac{{480}}{{216}}\int {\rm{d}} t\\ = \frac{5}{{648}}{t^3} - \frac{5}{{18}}{t^2} + \frac{{20}}{9}t + C\end{array}\)

Suy ra \(h(t) = \frac{5}{{648}}{t^3} - \frac{5}{{18}}{t^2} + \frac{{20}}{9}t + C\).

Tại thời điểm \(t = 0\), mực nước trong hồ chứa là \(6\;{\rm{m}}\) nên \(h(0) = 6\), suy ra \(C = 6\).

Vậy mực nước trong hồ chứa được cho bởi hàm số: \(h(t) = \frac{5}{{648}}{t^3} - \frac{5}{{18}}{t^2} + \frac{{20}}{9}t + 6(0 \le t \le 24)\)

b) Ta tìm \({\min _{[0;24]}}h(t)\)\({\max _{[0;24]}}h(t)\).

- \({h^\prime }(t) = 0 \Leftrightarrow 5{t^2} - 120t + 480 = 0\)

\( \Leftrightarrow {t^2} - 24t + 96 = 0 \Leftrightarrow t = 12 - 4\sqrt 3 \) hoă̆c \(t = 12 + 4\sqrt 3 \).

- Bảng biến thiên:

Mực nược trong hồ chứa của nhà máy điện thuỷ triều thay đổi trong suốt một ngày do nước chảy ra (khi thuỷ triều xuống) và nước chảy vào (khi thuỷ triều lên) (Hình 2) (ảnh 2)

 

Do đó, ta có: \({\min _{[0;24]}}h(t) = \min \{ h(0);h(12 + 4\sqrt 3 )\} = h(12 + 4\sqrt 3 ) \approx 0,9\);

\({\max _{[0;24]}}h(t) = \max \{ h(24);h(12 - 4\sqrt 3 )\} = h(12 - 4\sqrt 3 ) \approx 11,1\)

Vậy mực nước trong hồ chứa cao nhất khoảng \(11,1\;{\rm{m}}\) và thấp nhất khoảng \(0,9\;{\rm{m}}\).

c) Ta tìm \({\max _{[0;24]}}{h^\prime }(t)\).

- \({h^{\prime \prime }}(t) = \frac{1}{{216}}(10t - 120)\);

\({h^{\prime \prime }}(t) = 0{\rm{ khi }}t = 12.{\rm{ }}\)

- Bảng biến thiên của hàm số \({h^\prime }(t)\) :

Mực nược trong hồ chứa của nhà máy điện thuỷ triều thay đổi trong suốt một ngày do nước chảy ra (khi thuỷ triều xuống) và nước chảy vào (khi thuỷ triều lên) (Hình 2) (ảnh 3)

Do đó, ta có: \({\max _{[0;24]}}{h^\prime }(t) = \max \left\{ {{h^\prime }(0);{h^\prime }(24)} \right\} = {h^\prime }(24) = \frac{{20}}{9}\).

Vậy mực nước trong hồ chứa thay đổi nhanh nhất khi \(t = 0\)\(t = 24\). Tốc độ thay đổi của mực nước trong hồ chứa khi đó là \(\frac{{20}}{9}\;{\rm{m}}/{\rm{h}}\).

 


 

Lời giải

a) Hàm số h(t) là một nguyên hàm của hàm số \(v({\rm{t}})\).

Ta có: \(\int v (t)dt = \int {\left( { - 0,1{t^3} + {t^2}} \right)} dt =  - 0,1\int {{t^3}} dt + \int {{t^2}} dt =  - 0,025{t^4} + \frac{{{t^3}}}{3} + C\)

Suy ra \(h(t) =  - 0,025{t^4} + \frac{{{t^3}}}{3} + C\).

Vi cây cà chua khi trồng có chiều cao 5 cm nên \({\rm{h}}(0) = 5\), suy ra \({\rm{C}} = 5\).

Vậy công thức xác định hàm số h(t) là: \(h(t) =  - 0,025{t^4} + \frac{{{t^3}}}{3} + 5(t \ge 0)\).

b) Xét hàm số \(h(t) =  - 0,025{t^4} + \frac{{{t^3}}}{3} + 5(t \ge 0)\).

Ta có \(h(t) = v(t) =  - 0,1{t^3} + {t^2};h(t) = 0\) khi \(t = 0\) hoặc \({\rm{t}} = 10\).

Bảng biến thiên của hàm số \(h(t)\) trên \([0; + \infty )\) như sau:

Cây cà chua khi trồng có chiều cao 5 cm. Tốc độ tăng chiều cao của cây cà chua sau khi trồng cho bởi hàm số: (ảnh 1)

Từ bảng biến thiên ta thấy giai đoạn tăng trưởng của cây cà chua đó kéo dài 10 tuần.

c) Từ bảng biến thiên ở câu b, ta thấy chiều cao tối đa của cây cà chua đó là \(\frac{{265}}{3}\) cm .

d) Xét hàm tốc độ tăng chiều cao của cây cà chua: \(v(t) =  - 0,1{t^3} + {t^2}(t \ge 0)\).

Ta có \({v^{\prime \prime }}({\rm{t}}) =  - 0,3{{\rm{t}}^2} + 2{\rm{t}};{\rm{v}}\) (t) \( = 0\) khi \({\rm{t}} = 0\) hoặc \({\rm{t}} = \frac{{20}}{3}\).

Bảng biến thiên của hàm số \(v(t)\) trên \([0; + \infty )\) như sau:

Cây cà chua khi trồng có chiều cao 5 cm. Tốc độ tăng chiều cao của cây cà chua sau khi trồng cho bởi hàm số: (ảnh 2)

Từ bảng biến thiên ta suy ra vào thời điểm cây cà chua đó phát triển nhanh nhất thì cây cà chua cao \(\frac{{400}}{{27}}\;{\rm{cm}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP