Một xe ô tô đang chạy với tốc độ \(72\;{\rm{km}}/{\rm{h}}\) thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó \(80\;{\rm{m}}\). Người lái xe phản ứng một giây sau đó bằng cách đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ \(v(t) = - 10t + 30(\;{\rm{m}}/{\rm{s}})\), trong đó \(t\) là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi \(s(t)\) là quãng đường xe ô tô đi được trong \(t\) (giây) kể từ lúc đạp phanh.
a) Lập công thức biểu diễn hàm số \(s(t)\).
b) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là bao nhiêu giây?
c) Quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là bao nhiêu mét? Xe ô tô liệu có gặp tai nạn do va chạm với chướng ngại vật trên đường hay không?
Một xe ô tô đang chạy với tốc độ \(72\;{\rm{km}}/{\rm{h}}\) thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó \(80\;{\rm{m}}\). Người lái xe phản ứng một giây sau đó bằng cách đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ \(v(t) = - 10t + 30(\;{\rm{m}}/{\rm{s}})\), trong đó \(t\) là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi \(s(t)\) là quãng đường xe ô tô đi được trong \(t\) (giây) kể từ lúc đạp phanh.
a) Lập công thức biểu diễn hàm số \(s(t)\).
b) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là bao nhiêu giây?
c) Quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là bao nhiêu mét? Xe ô tô liệu có gặp tai nạn do va chạm với chướng ngại vật trên đường hay không?
Quảng cáo
Trả lời:
a) Ta đã biết, công thức tính quãng đường \(s(t)\) xe ô tô đi được trong \(t\) (giây) là một nguyên hàm của hàm \(v(t)\). Do \(\int {( - 10t + 30)} {\rm{d}}t = - 5{t^2} + 30t + C\)
nên ta có: \(s(t) = - 5{t^2} + 30t + C\) vởi \(C\) là hằng số nào đó. Do \(s(0) = 0\) nên \(C = 0\). Suy ra \(s(t) = - 5{t^2} + 30t\).
b) Xe ô tô dừng hẳn khi \(v(t) = 0\), tức là \( - 10t + 30 = 0\) hay \(t = 3\).
Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 3 giây.
c) Ta có: tốc độ \(72\;{\rm{km}}/{\rm{h}}\) cũng là tốc độ \(20\;{\rm{m}}/{\rm{s}}\).
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: \(s(3) = - 5 \cdot {3^2} + 30 \cdot 3 = 45(\;{\rm{m}})\).
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: \(20 + 45 = 65(\;{\rm{m}})\).
Do \(65 < 80\) nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường. Vì thế, tai nạn đã không xảy ra đối vởi xe ô tô đó.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Gọi h(t) là độ cao của quả bóng tại thời điểm t (h(t) tính theo mét, t tính theo giây).
Khi đó, ta có: h(t) = \[\int {\left( { - 9,8t + 19,6} \right)dt} \] = -4,9t2 +19,6t+C.
Mà quả bóng được ném lên từ độ cao 24,5 m tức là tại thời điểm t = 0 thì h = 24,5 hay h(0) = 24,5.
Suy ra C = 24,5.
Vậy công thức tính độ cao h (t) của quả bóng theo thời gian là: h(t)=-4,9t2 +19,6t +24,5.
b) Khi quả bóng chạm đất thì h(t) = 0. Ta có: – 4,9t2 + 19,6t + 24,5 = 0. Giải phương trình ta được:
t = - l; t =5. Mà t > 0 nên t = 5. Vậy sau 5 giây kể từ khi được ném lên thì quả bóng chạm đất.
Lời giải
Hàm số \({\rm{P}}({\rm{t}})\) là một nguyên hàm của hàm số P ( t ).
Ta có \(\int {{P^\prime }} (t)dt = \int k \sqrt t dt = k\int {{t^{\frac{1}{2}}}} dt = \frac{{2k}}{3} \cdot {t^{\frac{3}{2}}} + C = \frac{{2k}}{3}t\sqrt t + C\).
Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + C\).
Quần thể vi khuẩn ban đầu gồm 500 vi khuẩn nên với \({\rm{t}} = 0\) thì \({\rm{P}} = 500\) hay \({\rm{P}}(0)\) \( = 500\), suy ra \(\frac{{2k}}{3} \cdot 0 \cdot \sqrt 0 + C = 500\), do đó \({\rm{C}} = 500\). Suy ra \(P(t) = \frac{{2k}}{3}t\sqrt t + 500\).
Vi sau 1 ngày, số lượng vi khuẩn của quần thể đó đã tăng lên thành 600 vi khuẩn, tức là khi \({\rm{t}} = 1\) thì \({\rm{P}} = 600\), hay \({\rm{P}}(1) = 600\), suy ra \(\frac{{2k}}{3} \cdot 1 \cdot \sqrt 1 + 500 = 600\), do đó \({\rm{k}} = 150\).
Khi đó, công thức tính số lượng vi khuẩn của quần thể đó tại thời điểm t là:
\(P(t) = \frac{{2 \cdot 150}}{3}t\sqrt t + 500 = 100t\sqrt t + 500\quad (0 \le t \le 10){\rm{. }}\)
Vậy số lượng vi khuẩn của quần thể đó sau 7 ngày là:
\(P(7) = 100 \cdot 7\sqrt 7 + 500 \approx 2352{\rm{ (vi khuan)}}{\rm{. }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.