Câu hỏi:

28/07/2025 23 Lưu

Một vật chuyển động với vận tốc \(10\,{\rm{m/s}}\) thì tăng tốc với gia tốc được tính theo thời gian là \(a\left( t \right) = {t^2} + 3t\). Tính quãng đường vật đi được trong khoảng thời gian \(6\) giây kể từ khi vật bắt đầu tăng tốc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Ta có \(v\left( 0 \right) = 10\,{\rm{m/s}}\) và \(v\left( t \right) = \int\limits_0^t {a\left( t \right){\rm{d}}t} \)\( = \int\limits_0^t {\left( {{t^2} + 3t} \right){\rm{d}}t} \)\[ = \left. {\left( {\frac{{{t^3}}}{3} + \frac{{3{t^2}}}{2}} \right)} \right|_0^t\]\[ = \frac{1}{3}{t^3} + \frac{3}{2}{t^2}\].
Quãng đường vật đi được là \(S = \int\limits_0^6 {v\left( t \right){\rm{d}}t} \)\( = \int\limits_0^6 {\left( {\frac{1}{3}{t^3} + \frac{3}{2}{t^2}} \right){\rm{d}}t} \)\[ = \left. {\left( {\frac{1}{{12}}{t^4} + \frac{1}{2}{t^3}} \right)} \right|_0^6\]\[ = 216\,{\rm{m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \[{t_0} = 0\] là thời điểm người lái xe ô tô bắt đầu đạp phanh, khi ô tô dừng hẳn thì vận tốc triệt tiêu nên

\[ - 4t + 20 = 0 \Leftrightarrow t = 5\].
Từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường:
\[\int\limits_0^5 {\left( { - 4t + 20} \right){\rm{dt}}}  = 50\] mét.

Lời giải

Vận tốc của vật là \(v\left( t \right) = \int {a\left( t \right)} {\rm{dt}} = \int {\frac{{3{\rm{dt}}}}{{t + 1}}} {\mkern 1mu} = 3\ln \left| {t + 1} \right| + C\).
Tại thời điểm vật bắt đầu tăng tốc\(v\left( 0 \right) = C = 6\). Suy ra \(v\left( t \right) = 3\ln \left| {t + 1} \right| + 6\,\,\,\left( {{\rm{m/s}}} \right)\)
Vậy vận tốc của vật sau \(10\) giây bằng \(v\left( {10} \right) = 3\ln 11 + 6\,\, \approx 13\,\left( {{\rm{m/s}}} \right)\).