Câu hỏi:

24/07/2025 7 Lưu

Một vật chuyển động với vận tốc \(10\,{\rm{m/s}}\) thì tăng tốc với gia tốc được tính theo thời gian là \(a\left( t \right) = {t^2} + 3t\). Tính quãng đường vật đi được trong khoảng thời gian \(6\) giây kể từ khi vật bắt đầu tăng tốc.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Ta có \(v\left( 0 \right) = 10\,{\rm{m/s}}\) và \(v\left( t \right) = \int\limits_0^t {a\left( t \right){\rm{d}}t} \)\( = \int\limits_0^t {\left( {{t^2} + 3t} \right){\rm{d}}t} \)\[ = \left. {\left( {\frac{{{t^3}}}{3} + \frac{{3{t^2}}}{2}} \right)} \right|_0^t\]\[ = \frac{1}{3}{t^3} + \frac{3}{2}{t^2}\].
Quãng đường vật đi được là \(S = \int\limits_0^6 {v\left( t \right){\rm{d}}t} \)\( = \int\limits_0^6 {\left( {\frac{1}{3}{t^3} + \frac{3}{2}{t^2}} \right){\rm{d}}t} \)\[ = \left. {\left( {\frac{1}{{12}}{t^4} + \frac{1}{2}{t^3}} \right)} \right|_0^6\]\[ = 216\,{\rm{m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(a\left( t \right) = {t^2} + 4t\) \( \Rightarrow v\left( t \right) = \int {a\left( t \right){\rm{d}}t}  = \frac{{{t^3}}}{3} + 2{t^2} + C{\rm{ }}\)\(\left( {C \in \mathbb{R}} \right)\).
Mà \(v\left( 0 \right) = C = 15\) \( \Rightarrow v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\).
Vậy \(S = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + 2{t^2} + 15} \right){\rm{d}}t}  = 69,75\;{\rm{m}}\).

Lời giải

Gọi \(v\left( t \right)\) là vận tốc của vật, ta có \(v'\left( t \right) = a\left( t \right) = 3{t^2} + 2t \Rightarrow v\left( t \right) = \int {\left( {3{t^2} + 2t} \right)} {\rm{d}}t = {t^3} + {t^2} + C\).
Do \(v\left( 0 \right) = 10 \Leftrightarrow C = 10 \Rightarrow v\left( t \right) = {t^3} + {t^2} + 10\,\).
Khi đó \(S = \int\limits_0^{12} {\left( {{t^3} + {t^2} + 10} \right)} {\rm{d}}t = \left. {\left( {\frac{{{t^4}}}{4} + \frac{{{t^3}}}{3} + 10t} \right)} \right|_0^{12} = 5880\,\left( {\rm{m}} \right)\).