Câu hỏi:

24/07/2025 30 Lưu

 Một đoàn tàu đang chuyển động với vận tốc \({v_0} = 72\) km/h thì hãm phanh chuyển động chậm dần đều, sau \(10\) giây đạt vận tốc \({v_1} = 54\) km/h. Tàu đạt vận tốc \(v = 36\) km/h tại thời điểm nào tính từ lúc bắt đầu hãm phanh.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi \(a\) là gia tốc của chuyển động chậm dần đều nên \[a\] là hằng số thực âm.
Ta có: \[v = \int_{}^{} {a\,{\rm{d}}t}  = at + C\]
Ta có: \[\left\{ \begin{array}{l}v\left( 0 \right) = 72\,{\rm{km/h}}\\{\rm{v}}\left( {10} \right) = 54\,{\rm{km/h}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 72\\10a + C = 54\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 72\\a =  - \frac{9}{5}\end{array} \right.\]
Do đó: \[v =  - \frac{9}{5}t + 72\]. Vậy \(v = 36\)\( \Leftrightarrow 72 - \frac{9}{5}t = 36\) \( \Leftrightarrow t = 20{\rm{s}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \[{t_0} = 0\] là thời điểm người lái xe ô tô bắt đầu đạp phanh, khi ô tô dừng hẳn thì vận tốc triệt tiêu nên

\[ - 4t + 20 = 0 \Leftrightarrow t = 5\].
Từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển được quãng đường:
\[\int\limits_0^5 {\left( { - 4t + 20} \right){\rm{dt}}}  = 50\] mét.

Lời giải

Vận tốc của vật là \(v\left( t \right) = \int {a\left( t \right)} {\rm{dt}} = \int {\frac{{3{\rm{dt}}}}{{t + 1}}} {\mkern 1mu} = 3\ln \left| {t + 1} \right| + C\).
Tại thời điểm vật bắt đầu tăng tốc\(v\left( 0 \right) = C = 6\). Suy ra \(v\left( t \right) = 3\ln \left| {t + 1} \right| + 6\,\,\,\left( {{\rm{m/s}}} \right)\)
Vậy vận tốc của vật sau \(10\) giây bằng \(v\left( {10} \right) = 3\ln 11 + 6\,\, \approx 13\,\left( {{\rm{m/s}}} \right)\).