Câu hỏi:

24/07/2025 9 Lưu

 Một đoàn tàu đang chuyển động với vận tốc \({v_0} = 72\) km/h thì hãm phanh chuyển động chậm dần đều, sau \(10\) giây đạt vận tốc \({v_1} = 54\) km/h. Tàu đạt vận tốc \(v = 36\) km/h tại thời điểm nào tính từ lúc bắt đầu hãm phanh.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Gọi \(a\) là gia tốc của chuyển động chậm dần đều nên \[a\] là hằng số thực âm.
Ta có: \[v = \int_{}^{} {a\,{\rm{d}}t}  = at + C\]
Ta có: \[\left\{ \begin{array}{l}v\left( 0 \right) = 72\,{\rm{km/h}}\\{\rm{v}}\left( {10} \right) = 54\,{\rm{km/h}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 72\\10a + C = 54\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C = 72\\a =  - \frac{9}{5}\end{array} \right.\]
Do đó: \[v =  - \frac{9}{5}t + 72\]. Vậy \(v = 36\)\( \Leftrightarrow 72 - \frac{9}{5}t = 36\) \( \Leftrightarrow t = 20{\rm{s}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(a\left( t \right) = {t^2} + 4t\) \( \Rightarrow v\left( t \right) = \int {a\left( t \right){\rm{d}}t}  = \frac{{{t^3}}}{3} + 2{t^2} + C{\rm{ }}\)\(\left( {C \in \mathbb{R}} \right)\).
Mà \(v\left( 0 \right) = C = 15\) \( \Rightarrow v\left( t \right) = \frac{{{t^3}}}{3} + 2{t^2} + 15\).
Vậy \(S = \int\limits_0^3 {\left( {\frac{{{t^3}}}{3} + 2{t^2} + 15} \right){\rm{d}}t}  = 69,75\;{\rm{m}}\).

Lời giải

Gọi \(v\left( t \right)\) là vận tốc của vật, ta có \(v'\left( t \right) = a\left( t \right) = 3{t^2} + 2t \Rightarrow v\left( t \right) = \int {\left( {3{t^2} + 2t} \right)} {\rm{d}}t = {t^3} + {t^2} + C\).
Do \(v\left( 0 \right) = 10 \Leftrightarrow C = 10 \Rightarrow v\left( t \right) = {t^3} + {t^2} + 10\,\).
Khi đó \(S = \int\limits_0^{12} {\left( {{t^3} + {t^2} + 10} \right)} {\rm{d}}t = \left. {\left( {\frac{{{t^4}}}{4} + \frac{{{t^3}}}{3} + 10t} \right)} \right|_0^{12} = 5880\,\left( {\rm{m}} \right)\).