Cho hình chóp S.ABC. Gọi M là trung điểm của cạnh SC, N là trung điểm của cạnh AC. Khi đó đoạn thẳng NC là hình chiếu của đoạn thẳng MC lên mặt phẳng (ABC) theo phương chiếu
Quảng cáo
Trả lời:

Chọn A

Vì M, N lần lượt là trung điểm của SC, AC nên MN là đường trung bình của DSAC.
Suy ra MN // SA.
Do đó đoạn thẳng NC là hình chiếu của đoạn thẳng MC lên mặt phẳng (ABC) theo phương chiếu SA.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi E = BM Ç CD; F = CM Ç BD; G = DM Ç BC.
Trong mặt phẳng (ABE), kẻ MB' // AB (B' Î AE Ì (ACD)). Suy ra B' là hình chiếu của M trên (ACD) theo phương chiếu AB.
Trong mặt phẳng (ACF), kẻ MC' // AC (C' Î AF Ì (ABD)). Suy ra C' là hình chiếu của M trên (ABD) theo phương chiếu AC.
Trong mặt phẳng (ADG), kẻ MD' // AD (D' Î AG Ì (ABC)). Suy ra D' là hình chiếu của M trên (ABC) theo phương chiếu AD.
Trong DABE có \(\frac{{MB'}}{{AB}} = \frac{{ME}}{{BE}}\).
Tương tự: \(\frac{{MC'}}{{AC}} = \frac{{MF}}{{CF}}\); \(\frac{{MD'}}{{AD}} = \frac{{MG}}{{DG}}\).
Có \(\frac{{MB'}}{{AB}}.\frac{{MC'}}{{AC}}.\frac{{MD'}}{{AD}} \le {\left( {\frac{{\frac{{MB'}}{{AB}} + \frac{{MC'}}{{AC}} + \frac{{MD'}}{{AD}}}}{3}} \right)^3} = {\left( {\frac{{\frac{{ME}}{{BE}} + \frac{{MF}}{{CF}} + \frac{{MG}}{{DG}}}}{3}} \right)^3}\).
Ta thấy \(\frac{{{S_{\Delta MBD}}}}{{{S_{\Delta CBD}}}} = \frac{{BD.d\left( {M,BD} \right)}}{{BD.d\left( {C,BD} \right)}} = \frac{{MF}}{{CF}}\); tương tự \(\frac{{{S_{\Delta MCD}}}}{{{S_{\Delta BCD}}}} = \frac{{ME}}{{BE}};\frac{{{S_{\Delta MBC}}}}{{{S_{\Delta DBC}}}} = \frac{{MG}}{{DG}}\).
Suy ra \(\frac{{ME}}{{BE}} + \frac{{MF}}{{CF}} + \frac{{MG}}{{DG}} = \frac{{{S_{\Delta MCD}}}}{{{S_{\Delta BCD}}}} + \frac{{{S_{\Delta MBD}}}}{{{S_{\Delta CBD}}}} + \frac{{{S_{\Delta MBC}}}}{{{S_{\Delta DBC}}}}\)\( = \frac{{{S_{\Delta MCD}} + {S_{\Delta MBD}} + {S_{\Delta MBC}}}}{{{S_{\Delta BCD}}}} = \frac{{{S_{\Delta BCD}}}}{{{S_{\Delta BCD}}}} = 1\).
Do đó \(\frac{{MB'}}{{AB}}.\frac{{MC'}}{{AC}}.\frac{{MD'}}{{AD}} \le \frac{1}{{27}}\).
Suy ra a = 1; b = 27. Do đó a + b = 28.
Trả lời: 28.
Lời giải

a) Đường thẳng MN song song với CC' và cắt mặt phẳng (ABC) tại N nên N là hình chiếu song song của điểm M lên mặt phẳng (ABC) theo phương CC'.
b) Hình chiếu song song của tam giác A'CI lên mặt phẳng (ABC) theo phương CC' là tam giác ACJ với J là trung điểm của BC.
c) Mặt phẳng (MNI) và (BCC'B') có điểm chung là I.
Lại có \(\left\{ \begin{array}{l}MN \subset \left( {MNI} \right)\\BB' \subset \left( {BCC'B'} \right)\\MN//BB'\end{array} \right.\). Suy ra giao tuyến của mặt phẳng (MNI) và (BCC'B') là đường thẳng qua I và song song với BB'.
d) Gọi J, H lần lượt là trung điểm của BC và B'C'.
Gọi K = MI Ç NJ, suy ra K chính là giao điểm của MI và (ABC).
Có NJ = JK = MH Þ NK = 2MH = AC.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.