Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của SA và SD. Khi đó:
a) Đường thẳng ON và SB chéo nhau.
b) (OMN) // (SBC).
c) Gọi P và Q là trung điểm của AB và ON. Khi đó PQ cắt (SBC).
d) Gọi R là trung điểm AD. Khi đó (MOR) // (SCD).
Quảng cáo
Trả lời:


a) Vì O, N lần lượt là trung điểm của BD, SD nên ON là đường trung bình của DSBD.
Suy ra ON // SB.
b) Vì ON // SB mà SB Ì (SBC) Þ ON // (SBC) (1).
MN là đường trung bình của DSAD Þ MN // AD mà AD // BC nên MN // BC mà BC Ì (SBC).
Do đó MN // (SBC) (2).
Từ (1) và (2) suy ra (OMN) // (SBC).
c) Có (OMN) // (SBC) mà (OMN) Ì (MNOP) nên (MNOP) // (SBC).
Mà PQ Ì (MNOP) nên PQ // (SBC).
d) MR là đường trung bình của DSAD Þ MR // SD mà SD Ì (SCD) Þ MR // (SCD).
OR là đường trung bình của DADC Þ OR // CD mà CD Ì (SCD) Þ OR // (SCD).
Do đó (MOR) // (SCD).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Trong mặt phẳng (ABCD) gọi O = AC Ç BD.
Trong mặt phẳng (ABCD) gọi I = AC Ç MN.
Trong mặt phẳng (SAC) gọi K = PI Ç SC mà PI Ì (PMN) Þ K = SC Ç (PMN).
Dễ dàng chứng minh được I là trung điểm của AO.
Trong mặt phẳng (SAC), kẻ OH // IK Þ \(\frac{{CO}}{{CI}} = \frac{{CH}}{{CK}} = \frac{2}{3}\).
Xét DSOH, PK // OH mà P là trung điểm SO nên K là trung điểm của SH.
Suy ra \(\frac{{SK}}{{SC}} = \frac{1}{4} = 0,25\).
Trả lời: 0,25.
Lời giải

a) S Î (SAB) Ç (SCD) và AB // CD (do ABCD là hình chữ nhật).
Do đó giao tuyến của hai mặt phẳng này đi qua S và song song với AB.
b) Gọi O = AC Ç BD. Khi đó (SAC) Ç (SBD) = SO.
c) Có G Î (SAB) Ç (IJG).
Vì I, J lần lượt là trung điểm của các cạnh AD, BC nên IJ // AB // CD.
Do đó giao tuyến của hai mặt phẳng này là đường thẳng qua G và song song với CD.
d) Gọi E là trung điểm của AB.
Có \(\frac{{SG}}{{SE}} = \frac{{SM}}{{SB}} = \frac{2}{3} \Rightarrow MG//AB\).
Mà C Î (CGM) Ç (SBC) nên giao tuyến của hai đường thẳng này đi qua C và song song với AB.
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. MN, BC, HK đồng quy hoặc đôi một song song với nhau.
B. MN, BC, HK đôi một cắt nhau.
C. MN, BC, HK đôi một song song với nhau.
D. MN, BC, HK đồng quy.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. (EIK).
B. (OEI).
C. (KOE).
D. (BEK).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.