Câu hỏi:

27/07/2025 1,204 Lưu

Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC BD.

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Giao điểm I của đường thẳng AN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SD.

c) Giao điểm J của đường thẳng MN và mặt phẳng (SBD) là điểm nằm trên đường thẳng SO.

d) Ba điểm I, J, B thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình bình hành ABCD và một điểm S không thuộc mặt phẳng (ABCD), các điểm M, N lần lượt là trung điểm của đoạn thẳng AB, SC. Gọi O = AC  BD.a) SO là giao tuyến của hai mặt phẳng (SAC) và ( (ảnh 1)

a) SO là giao tuyến của hai mặt phẳng (SAC) và (SBD).

b) Trong mặt phẳng (ABCD) có O = AC Ç BD.

Trong (SAC), gọi I = SO Ç AN.

Ta có \(\left\{ \begin{array}{l}I \in AN\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I = AN \cap \left( {SBD} \right)\).

Vậy điểm I là điểm nằm trên đường thẳng SO.

c) Trong (ABCD), gọi P = CM Ç BD.

Trong (SCM), gọi J = MN Ç SP.

Ta có \(\left\{ \begin{array}{l}J \in MN\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J = MN \cap \left( {SBD} \right)\).

Vậy J là điểm nằm trên đường thẳng SP.

d) Dễ thấy B Î (ABN) Ç (SBD) (1).

Ta có \(\left\{ \begin{array}{l}I \in AN,AN \subset \left( {ABN} \right)\\I \in SO,SO \subset \left( {SBD} \right)\end{array} \right. \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (2).

Tương tự \(\left\{ \begin{array}{l}J \in MN,MN \subset \left( {ABN} \right)\\J \in SP,SP \subset \left( {SBD} \right)\end{array} \right. \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)\) (3).

Từ (1), (2), (3) suy ra B, I, J cùng thuộc giao tuyến của hai mặt phẳng (ABN) và (SBD) nên ba điểm này thẳng hàng.

Đáp án: a) Đúng;   b) Sai;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P lần lượt là trung điểm của AB, AD và SO. Gọi K là giao điểm của SC với mặt phẳng (MNP). Tính tỉ số \(\frac{{SK}}{{SC}}\). (ảnh 1)

Trong mặt phẳng (ABCD) gọi O = AC Ç BD.

Trong mặt phẳng (ABCD) gọi I = AC Ç MN.

Trong mặt phẳng (SAC) gọi K = PI Ç SC mà PI Ì (PMN) Þ K = SC Ç (PMN).

Dễ dàng chứng minh được I là trung điểm của AO.

Trong mặt phẳng (SAC), kẻ OH // IK Þ \(\frac{{CO}}{{CI}} = \frac{{CH}}{{CK}} = \frac{2}{3}\).

Xét DSOH, PK // OH mà P là trung điểm SO nên K là trung điểm của SH.

Suy ra \(\frac{{SK}}{{SC}} = \frac{1}{4} = 0,25\).

Trả lời: 0,25.

Câu 2

A. MN, BC, HK đồng quy hoặc đôi một song song với nhau.

B. MN, BC, HK đôi một cắt nhau.

C. MN, BC, HK đôi một song song với nhau.

D. MN, BC, HK đồng quy.

Lời giải

Chọn C

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. Mặt phẳng (α) đi qua MN và cắt SB tại K, cắt SC tại H. Chọn phát biểu đúng. (ảnh 2)

Ta có \(\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( {ABCD} \right) = MN\\\left( \alpha \right) \cap \left( {SBC} \right) = HK\\\left( {ABCD} \right) \cap \left( {SBC} \right) = BC\\MN//BC\end{array} \right. \Rightarrow MN//BC//HK\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP