Một chiếc hộp có chín thẻ đánh số thứ tự từ 1 đến 9. Rút ngẫu nhiên 2 thẻ rồi nhân hai số ghi trên thẻ lại với nhau. Tính xác suất để kết quả nhân được là một số chẵn (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:

A là biến cố “Hai thẻ rút được mang số chẵn”;
B là biến cố “Hai thẻ rút được có 1 thẻ mang số chẵn và 1 thẻ mang số lẻ”;
C là biến cố “Kết quả nhân là một số chẵn”.
Khi đó C = A B.
Do A, B xung khắc nên P(C) = P(A) + P(B).
Ta có \(P\left( A \right) = \frac{{C_4^2}}{{C_9^2}} = \frac{1}{6}\); \(P\left( B \right) = \frac{{C_4^1.C_5^1}}{{C_9^2}} = \frac{5}{9}\).
Do đó \(P\left( C \right) = \frac{1}{6} + \frac{5}{9} = \frac{{13}}{{18}} \approx 0,72\).
Trả lời: 0,72.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C.
Gọi biến cố A: “Sinh viên được chọn học tiếng Anh”; biến cố B: “Sinh viên được chọn chỉ học tiếng Pháp”; biến cố D: “Sinh viên được chọn không học tiếng Anh và tiếng Pháp”.
Ta có \(P\left( A \right) = \frac{{40}}{{60}} = \frac{2}{3};P\left( B \right) = \frac{{30}}{{60}} = \frac{1}{2}\) và \(P\left( {A \cap B} \right) = \frac{{20}}{{60}} = \frac{1}{3}\).
Ta có \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) = \frac{2}{3} + \frac{1}{2} - \frac{1}{3} = \frac{5}{6}\).
Suy ra \(P\left( D \right) = P\left( {\overline {A \cup B} } \right) = 1 - P\left( {A \cup B} \right) = 1 - \frac{5}{6} = \frac{1}{6}\).
Lời giải
a) \(P\left( A \right) = \frac{{C_4^2}}{{C_9^2}} = \frac{1}{6}\).
b) \(P\left( B \right) = \frac{{C_3^2}}{{C_9^2}} = \frac{1}{{12}}\).
c) \(P\left( C \right) = \frac{{C_2^2}}{{C_9^2}} = \frac{1}{{36}}\).
d) Xác suất để chọn được 2 viên bi cùng màu là
\(P\left( {A \cup B \cup C} \right) = P\left( A \right) + P\left( B \right) + P\left( C \right) = \frac{1}{6} + \frac{1}{{12}} + \frac{1}{{36}} = \frac{5}{{18}}\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.