Câu hỏi:

19/08/2025 26 Lưu

Một vật chuyển động trên đường thẳng được xác định bởi công thức s(t) = t3 – 3t2 + 7t – 2, trong đó t > 0 và tính bằng giây và s là quãng đường chuyển động được của vật trong t giây tính bằng mét. Khi đó:

a) Tốc độ của vật tại thời điểm t = 2 là 7 m/s.

b) Gia tốc của vật tại thời điểm t = 2 là 6 m/s2.

c) Gia tốc của vật tại thời điểm mà vận tốc của chuyển động bằng 16 m/s là 10 m/s2.

d) Thời điểm t = 1 giây tại đó vận tốc của chuyển động đạt giá trị nhỏ nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có v(t) = s'(t) = 3t2 – 6t + 7; a(t) = v'(t)= 6t – 6.

a) v(2) = 3.22 – 6.2 + 7 = 7 m/s.

b) a(2) = 6.2 – 6 = 6 m/s2.

c) Có v(t) = 16 Û 3t2 – 6t + 7 = 16 Û t = 3 (vì t > 0).

Khi đó a(3) = 6.3 – 6 = 12 m/s2.

d) Có v(t) = 3t2 – 6t + 7 = 3(t – 1)2 + 4 ³ 4.

Dấu “=” xảy ra khi t = 1.

Vậy vận tốc của chuyển động đạt giá trị nhỏ nhất khi t = 1 giây.

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Có y' = 2(x2 + 3x – 1) + (−2x – 3)(2x + 3) = 6x2 – 18x – 7.

y'(2) = 67; y'(3) = 115. Suy ra y'(2) > y'(3).

b) y'(2) = 67.

c) Thay x = 3 vào y' ta được y' = 115.

Do đó đồ thị của hàm số y' đi qua điểm (3; 115).

d) Có y' = 0 Û 6x2 – 18x – 7 = 0 có D' = 39 > 0 nên phương trình có hai nghiệm phân biệt.

Theo định lí viet tích hai nghiệm của phương trình là \(\frac{7}{6}\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

Lời giải

Ta có \(f'\left( x \right) = - 2\cos \left( {2x + \frac{\pi }{{12}}} \right)\); \(f''\left( x \right) = 4\sin \left( {2x + \frac{\pi }{{12}}} \right)\).

Do đó \(f''\left( {\frac{\pi }{{24}}} \right) = 4\sin \left( {2.\frac{\pi }{{24}} + \frac{\pi }{{12}}} \right) = 2\).

Trả lời: 2.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP