Cho hàm số \[y = f\left( x \right)\]liên tục trên \[\left[ {a;b} \right]\]. Các mệnh đề sau đây đúng hay sai?
A.\[\int\limits_a^b {f\left( x \right){\rm{d}}x} = \int\limits_b^a {f\left( x \right){\rm{d}}x} \]
Cho hàm số \[y = f\left( x \right)\]liên tục trên \[\left[ {a;b} \right]\]. Các mệnh đề sau đây đúng hay sai?
Quảng cáo
Trả lời:
A-Sai
Lý thuyết
\[\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \]
\[\int\limits_a^a {2024f\left( x \right){\rm{d}}x = 0} .\]
Câu hỏi cùng đoạn
Câu 2:
B.\[\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \]
B.\[\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \]
B.Sai
Lý thuyết
\[\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \]
\[\int\limits_a^a {2024f\left( x \right){\rm{d}}x = 0} .\]
Câu 3:
D. \[\int\limits_a^a {2024f\left( x \right){\rm{d}}x = 0} .\]
D. \[\int\limits_a^a {2024f\left( x \right){\rm{d}}x = 0} .\]
D-Đúng
Lý thuyết
\[\int\limits_a^b {f\left( x \right){\rm{d}}x} = - \int\limits_b^a {f\left( x \right){\rm{d}}x} \]
\[\int\limits_a^a {2024f\left( x \right){\rm{d}}x = 0} .\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(v(t) = \int a (t){\rm{d}}t = \int 2 \cos t\;{\rm{d}}t = 2\sin t + C\).
Mà tại thời điểm bắt đầu chuyển động, vật có vận tốc bằng 0 nên ta có \(v(0) = 0\) hay \(C = 0\). Vậy \(v(t) = 2\sin t\).
Suy ra ĐÚNG.
Lời giải
a) Đặt \(a = \int\limits_{ - 1}^2 {f\left( x \right){\rm{d}}x} \), \(b = \int\limits_{ - 1}^2 {f\left( x \right){\rm{d}}x} \), ta có hệ phương trình \[\left\{ \begin{array}{l}3a + 2b = 4\\2a - b = 5\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - 1\end{array} \right.\]
Vậy \(\int\limits_{ - 1}^2 {f\left( x \right){\rm{d}}x} = 2\).
Suy ra a, b ĐÚNG
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.