Câu hỏi:

01/08/2025 155 Lưu

Câu lạc bộ văn nghệ của trường Giải Phóng có 40 bạn đều biết chơi ít nhất một trong hai loại đàn là organ và guitar, trong đó có 27 bạn biết chơi đàn organ, 25 bạn biết chơi đàn guitar. Chọn ngẫu nhiên 1 bạn. Xác suất chọn được bạn biết chơi đàn organ, biết bạn đó chơi được đàn guitar, là bao nhiêu?

Đán án: ……………………

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố: \(A\) : "Chọn được bạn biết chơi đàn organ";

\(B\) : "Chọn được bạn biết chơi đàn guitar".

Khi đó, \({\rm{P}}\left( A \right) = \frac{{27}}{{40}} = 0,675;{\rm{P}}\left( B \right) = \frac{{25}}{{40}} = 0,625;{\rm{P}}\left( {A \cup B} \right) = 1\).

Suy ra \({\rm{P}}\left( {A \cap B} \right) = {\rm{P}}\left( A \right) + {\rm{P}}\left( B \right) - {\rm{P}}\left( {A \cup B} \right) = 0,675 + 0,625 - 1 = 0,3\).

Vậy xác suất chọn được bạn biết chơi đàn organ, biết bạn đó chơi được đàn guitar, là \({\rm{P}}\left( {A\mid B} \right) = \frac{{0,3}}{{0,625}} = 0,48\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\) : "Chọn được học sinh thích môn Tin học";

B: "Chọn được học sinh thích môn Tiếng Anh".

Khi đó, \({\rm{P}}\left( A \right) = \frac{{15}}{{37}};{\rm{P}}\left( B \right) = \frac{{20}}{{37}};{\rm{P}}\left( {A \cup B} \right) = 1 - \frac{{10}}{{37}} = \frac{{27}}{{37}}\).

Suy ra \({\rm{P}}\left( {A \cap B} \right) = {\rm{P}}\left( A \right) + {\rm{P}}\left( B \right) - {\rm{P}}\left( {A \cup B} \right) = \frac{{15}}{{37}} + \frac{{20}}{{37}} - \frac{{27}}{{37}} = \frac{8}{{37}}\).

Vậy xác suất chọn được học sinh thích môn Tin học, biết học sinh đó thích môn

Tiếng Anh, là \({\rm{P}}\left( {A\mid B} \right) = \frac{{\frac{8}{{\frac{{37}}{{20}}}}}}{{\frac{{37}}{{37}}}} = 0,4\).

Lời giải

Xét hai biến cố sau:

A: "Học sinh được chọn ra đạt điểm giỏi";

\(B\) : "Học sinh được chọn ra là học sinh nữ".

Khi đó, xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, chính là xác suất của \(A\) với điều kiện \(B\).

Do có 26 học sinh nữ đạt điểm giỏi nên

\({\rm{P}}(A \cap B) = \frac{{26}}{{200}} = 0,13.{\rm{ }}\)

Do có 105 học sinh nữ nên \({\rm{P}}(B) = \frac{{105}}{{200}} = 0,525\). Vì thế, ta có:

\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{0,13}}{{0,525}} \approx 0,25.\)

Vậy xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, là 0,25 .