Lớp 12A có 37 học sinh, trong đó có 15 học sinh thích môn Tin học, 20 học sinh thích môn Tiếng Anh, 10 học sinh không thích môn nào trong hai môn trên. Chọn ngẫu nhiên 1 học sinh. Xác suất chọn được học sinh thích môn Tin học, biết học sinh đó thích môn Tiếng Anh, là bao nhiêu?
Đán án: ……………………
Lớp 12A có 37 học sinh, trong đó có 15 học sinh thích môn Tin học, 20 học sinh thích môn Tiếng Anh, 10 học sinh không thích môn nào trong hai môn trên. Chọn ngẫu nhiên 1 học sinh. Xác suất chọn được học sinh thích môn Tin học, biết học sinh đó thích môn Tiếng Anh, là bao nhiêu?
Đán án: ……………………
Quảng cáo
Trả lời:

Xét các biến cố: \(A\) : "Chọn được học sinh thích môn Tin học";
B: "Chọn được học sinh thích môn Tiếng Anh".
Khi đó, \({\rm{P}}\left( A \right) = \frac{{15}}{{37}};{\rm{P}}\left( B \right) = \frac{{20}}{{37}};{\rm{P}}\left( {A \cup B} \right) = 1 - \frac{{10}}{{37}} = \frac{{27}}{{37}}\).
Suy ra \({\rm{P}}\left( {A \cap B} \right) = {\rm{P}}\left( A \right) + {\rm{P}}\left( B \right) - {\rm{P}}\left( {A \cup B} \right) = \frac{{15}}{{37}} + \frac{{20}}{{37}} - \frac{{27}}{{37}} = \frac{8}{{37}}\).
Vậy xác suất chọn được học sinh thích môn Tin học, biết học sinh đó thích môn
Tiếng Anh, là \({\rm{P}}\left( {A\mid B} \right) = \frac{{\frac{8}{{\frac{{37}}{{20}}}}}}{{\frac{{37}}{{37}}}} = 0,4\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hai biến cố sau:
A: "Học sinh được chọn ra đạt điểm giỏi";
\(B\) : "Học sinh được chọn ra là học sinh nữ".
Khi đó, xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, chính là xác suất của \(A\) với điều kiện \(B\).
Do có 26 học sinh nữ đạt điểm giỏi nên
\({\rm{P}}(A \cap B) = \frac{{26}}{{200}} = 0,13.{\rm{ }}\)
Do có 105 học sinh nữ nên \({\rm{P}}(B) = \frac{{105}}{{200}} = 0,525\). Vì thế, ta có:
\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{0,13}}{{0,525}} \approx 0,25.\)
Vậy xác suất để học sinh được chọn ra đạt điểm giỏi, biết rằng học sinh đó là nữ, là 0,25 .
Lời giải
Gọi A là biến cố: “rút ra được câu hỏi lý thuyết”
Gọi B là biến cố: “rút ra được câu khó”
Nếu biết B đã xảy ra (nghĩa là câu hỏi rút ra là một câu trong số 17 câu khó) thì xác suất để câu hỏi đó là lý thuyết (nghĩa là câu hỏi đó là một câu trong số 5 câu hỏi lý thuyết khó ) chính là xác suất A có điều kiện B đã xảy ra. Ta đi tính \[P\left( {A|B} \right)\]
Ta có:
\[P\left( A \right) = \frac{{13}}{{40}}\]
\[P\left( B \right) = \frac{{17}}{{40}}\]
\[P\left( {A \cap B} \right) = \frac{5}{{40}}\]
Vậy \[P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{5}{{40}}}}{{\frac{{17}}{{40}}}} = \frac{5}{{17}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.