Câu hỏi:

02/08/2025 4 Lưu

Người ta tiến hành phỏng vấn hai nhóm khán giả về một bộ phim mới công chiếu. Nhóm A gồm những khán giả thuộc lứa tuổi 20 – 30, nhóm B thuộc lứa tuổi trên 30. Người được hỏi ý kiến phải đánh giá bộ phim bằng cách cho điểm theo một số tiêu chí nêu trong phiếu điều tra và sau đó lấy tổng số điểm (thang điểm 100). Bảng dưới đây trình bày kết quả điều tra hai nhóm khán giả:

(Trả lời ngắn) Người ta tiến hành phỏng vấn hai nhóm khán giả về một bộ phim mới công chiếu. Nhóm A gồm những khán giả thuộc lứa tuổi 20 – 30 (ảnh 1)

Tìm khoảng biến thiên của từng nhóm người của mẫu số liệu được cho trong bảng trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khoảng biến thiên: RA = 100 − 50 = 50 và RB = 90 − 70 = 20. Vì RA > RB .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Hai mẫu số liệu đều có khoảng biến thiên là \(R = 100 - 50 = 50\) nên không thể căn cú vào đó để nói điểm của lớp nào đồng đều hơn.

b) Kích thước của hai mẫu số liệu đều là \(N = 100\). Ta có \(\frac{N}{4} = 25;\frac{N}{2} = 50;\frac{{3N}}{4} = 75\).

- Đối với mẫu số liệu về điểm của lớp \(A\), ta tìm các tứ phân vị \(Q_1^A,Q_2^A,Q_3^A\) và khoảng tứ phân vị \(\Delta _Q^A\) qua bảng tần số tích luỹ dưới đây:

(Trả lời ngắn) Điểm kiểm tra cuối khoá môn Tiếng Anh của hai lớp ở một trung tâm ngoại ngữ được thống kê trong các Bảng 3.7a và 3.7b. (ảnh 2)

Nhóm chứa \(Q_1^A\) là \([60;70)\). \(Q_1^A = 60 + \frac{{25 - 8}}{{20}} \cdot 10 = 68,5\).

Nhóm chứa \(Q_2^A\) là [70 ; 80).\(Q_2^A = 70 + \frac{{50 - 28}}{{50}} \cdot 10 = 74,4\).

Nhóm chứa \(Q_3^A\) là [70 ; 80).\(Q_3^A = 70 + \frac{{75 - 28}}{{50}} \cdot 10 = 79,4\).

Vậy \(\Delta _Q^A = 79,4 - 68,5 = 10,9\).

- Gọi \(Q_1^B,Q_2^B,Q_3^B\) là các tứ phân vị và \(\Delta _Q^B\) là khoảng tứ phân vị của mẫu số liệu về điểm của lớp B. Ta lập bảng tần số tích luỹ và tính được:

(Trả lời ngắn) Điểm kiểm tra cuối khoá môn Tiếng Anh của hai lớp ở một trung tâm ngoại ngữ được thống kê trong các Bảng 3.7a và 3.7b. (ảnh 3)

Nhóm chứa \(Q_1^B\) là \([60;70)\). \(Q_1^B = 60 + \frac{{25 - 15}}{{20}} \cdot 10 = 65\).

Nhóm chứa \(Q_2^B\) là [70 ; 80).\(Q_2^B = 70 + \frac{{50 - 35}}{{30}} \cdot 10 = 75\).

Nhóm chứa \(Q_3^B\) là [80 ; 90).\(Q_3^B = 80 + \frac{{75 - 65}}{{20}} \cdot 10 = 85\).

Vậy \(\Delta _Q^B = 85 - 65 = 20\).

Lời giải

(Trả lời ngắn) Mẫu số liệu dưới đây ghi lại tốc độ của 40 ô tô khi đi qua một trạm đo tốc độ (đơn vị: km/h). (ảnh 2)

Lập mẫu số liệu ghép nhóm bao gồm cả tần số tích lũy như ở Bảng 8.

Số phần tử của mẫu là \(n = 40\). Ta có \(\frac{n}{2} = 20\) mà \(15 < 20 < 22\).

Suy ra nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.

Xét nhóm 3 có \(r = 50;d = 5;{n_3} = 7\) và nhóm 2 có \(c{f_2} = 15\).

Trung vị của mẫu số liệu ghép nhóm đó là \({M_e} = 50 + \frac{{20 - 15}}{7}.5 = \frac{{375}}{7}\left( {km/h} \right)\).

Suy ra \(a = 375\).

 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP