Vẽ ba đường trung tuyến của một tam giác (h.162). Chứng minh sáu tam giác 1, 2, 3, 4, 5, 6 có diện tích bằng nhau.
Câu hỏi trong đề: Giải toán 8: Chương 2: Đa giác. Diện tích đa giác !!
Quảng cáo
Trả lời:
Theo tính chất trung tuyến, suy ra:
S1 = S2 (có đáy bằng nhau và cùng chiều cao) (1)
S3 = S4 (có đáy bằng nhau và cùng chiều cao) (2)
S5 = S6 (có đáy bằng nhau và cùng chiều cao) (3)
Ta có: S1 + S2 + S3 = S4 + S5 + S6 (= )
⇔ 2S1 + S3= S4 + 2S6 ( vì S1= S2; S5 = S6)
⇔ 2S1 = 2S6( vì S3 = S4)
⇔ S1 = S6.
Và S1+ S2+ S6 = S3 + S4 +S5 = (5)
Kết hợp (5) với (1), (2), (3) suy ra S2 = S3 (5’)
Và S1 + S5 + S6 = S2+ S3 + S4 = (6)
Kết hợp (6) với (1), (2), (3) suy ra S4 = S5 (6’)
Từ (4’), (5’), (6’) và kết hợp (1) (2) (3) ta có: S1= S2 = S3 = S4 = S5 = S6
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi đường cao còn lại là h.
Theo quan hệ giữa đường xiên và hình chiếu thì ta có chiều cao của hình bình hành luôn nhỏ hơn cạnh không tương ứng với nó.
⇒ Đường cao có độ dài bằng 5cm ứng với cạnh 4cm
⇒ SABCD = 4.5 = 20
Mà SABCD = h.6
⇒ h.6 = 20 ⇒ h = 20 : 6 = 3,33 (cm).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.